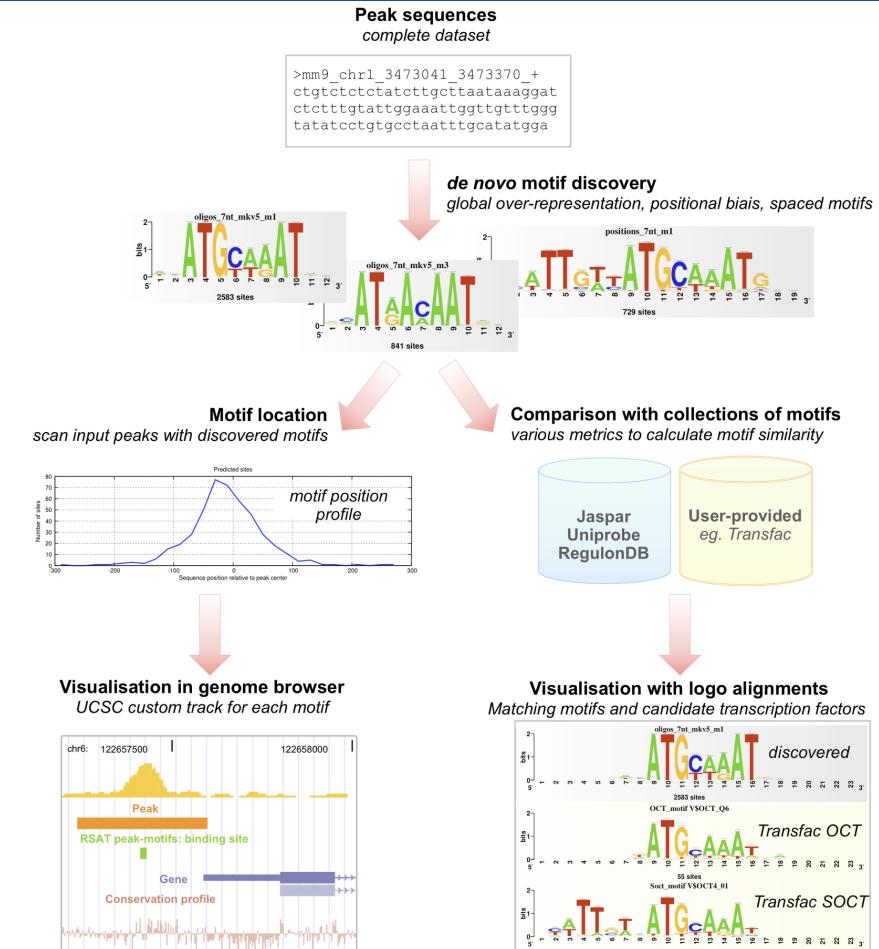


Analyzing ChIP-seq (and related) peaks with RSAT

*RSAT peak-motifs :
discovering motifs in full-size peak sets*

An integrated workflow for analyzing ChIP-seq peaks

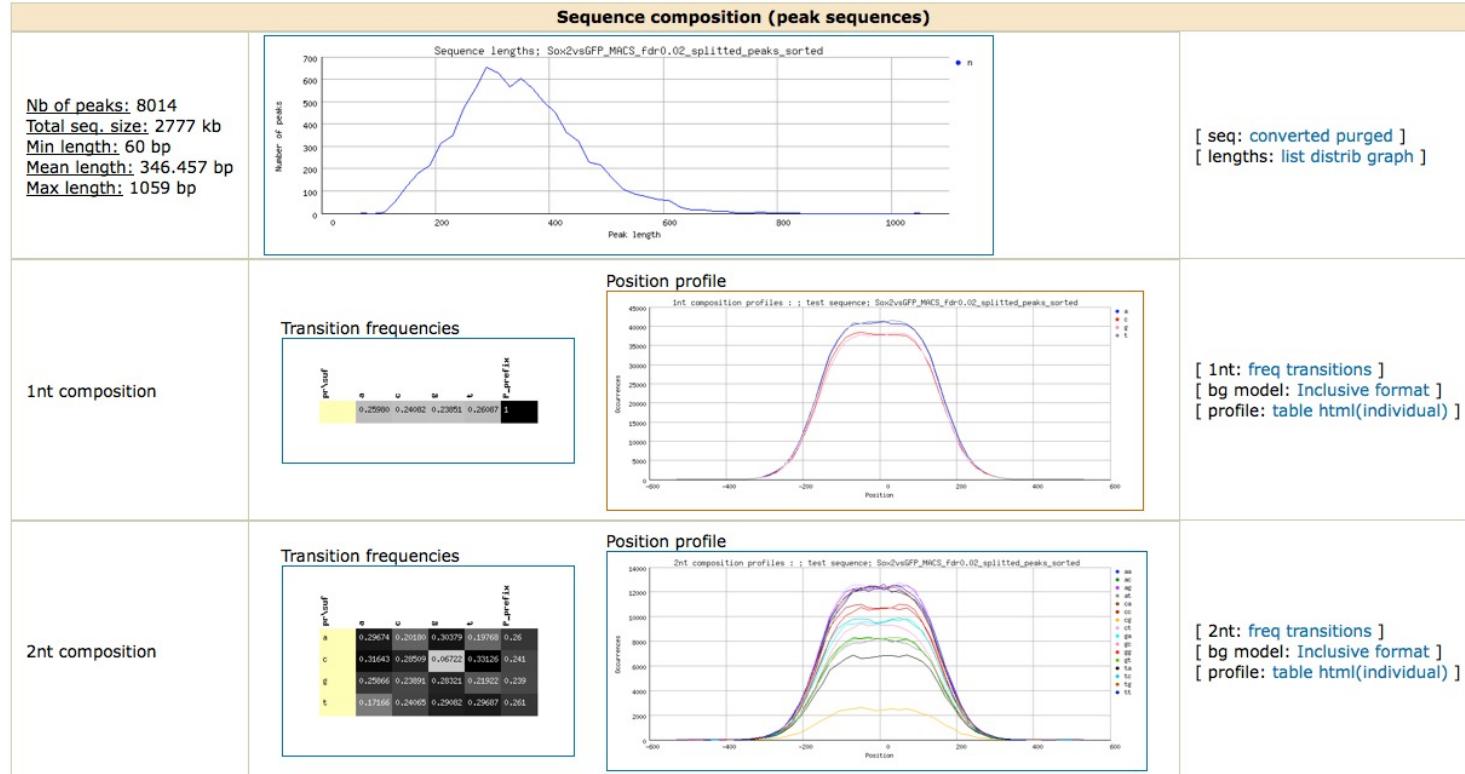
- The program **peak-motifs** is a work flow combining a series of RSAT tools optimized for discovered motifs in large sequence sets (tens of Mb) resulting from ChIP-seq experiments..
- Multiple pattern discovery algorithms
 - Global over-representation
 - Positional biases
 - Local over-representation
- Discovered motifs are compared with
 - motif databases
 - user-specified reference motifs.
- Prediction of binding sites, which can be uploaded as custom annotation tracks to genome browsers (e.g. UCSC) for visualization.
- Interfaces
 - Stand-alone
 - Web interface
 - Web services (SOAP/WSDL)



Composition analysis

■ Analysis of the input sequence composition

- Nucleotide composition + positional distribution
- Dinucleotide composition reveals dependencies such as CpG islands



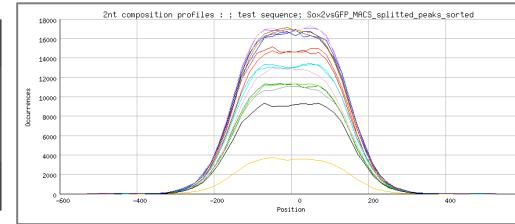
Composition analysis results

- The composition analysis reveals differences between data sets.
 - Sox2 and Ctcf peaks: clear avoidance of CpG dinucleotides.
 - n-Myc peaks appear as CpG island (the avoidance of CpG is relaxed).
 - The center of Ctcf peaks shows a strong depletion in AA, TT, AT and TA.

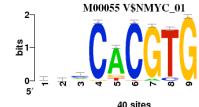
Sox2



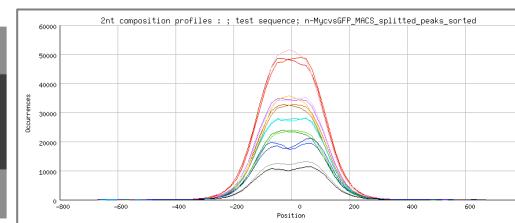
Pr	a	c	g	t	P-I
a	0.29534	0.20296	0.30443	0.19727	0.259
c	0.31618	0.28498	0.07000	0.32884	0.242
g	0.25771	0.24000	0.28381	0.21848	0.24
t	0.17134	0.24103	0.29263	0.29499	0.259



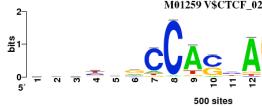
n-Myc



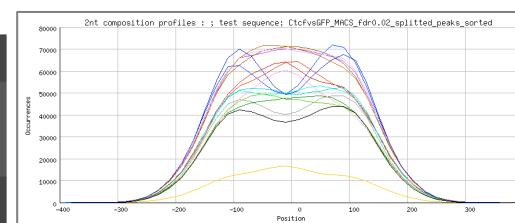
Pr	a	c	g	t	P-I
a	0.22611	0.25100	0.37576	0.14712	0.194
c	0.21417	0.32368	0.22346	0.23869	0.306
g	0.19371	0.32277	0.32413	0.15940	0.306
t	0.12838	0.30586	0.33855	0.22721	0.194



Ctcf

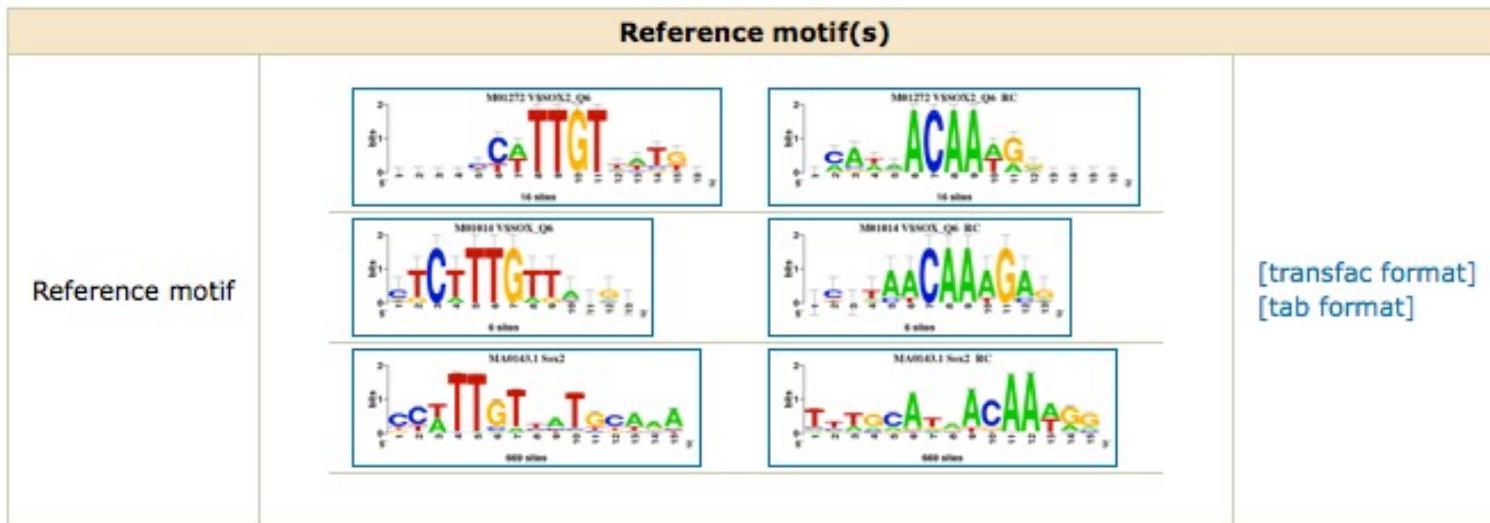


Pr	a	c	g	t	P-I
a	0.28252	0.20757	0.30011	0.20980	0.261
c	0.32450	0.27627	0.06945	0.32979	0.239
g	0.25378	0.24269	0.27546	0.22807	0.238
t	0.18761	0.23215	0.29578	0.28445	0.262

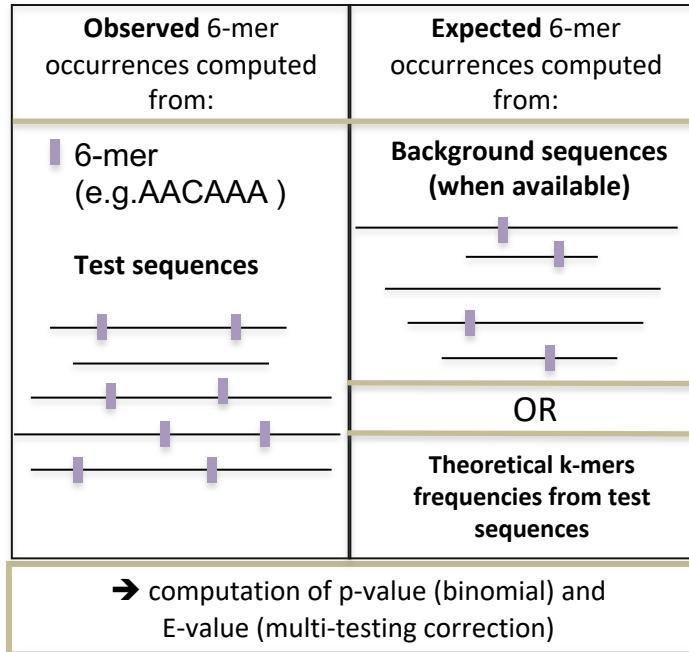
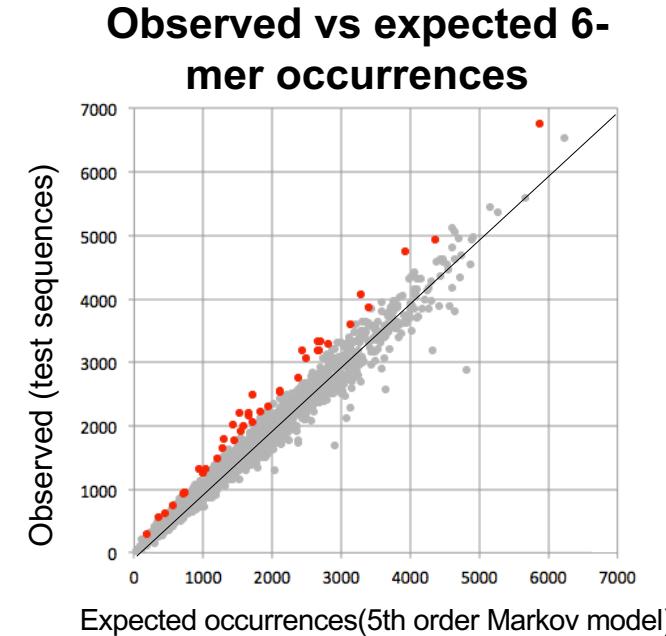


User-specified reference motifs (the “expected” answer)

- One or several reference motifs can be defined.
- Reference motifs are the ones which are expected to be found in the dataset.
 - More precisely, if those motifs are not reported, it is considered as a failure.
- Choice of reference motifs is somewhat tricky.
 - Example: Sox2 peaks
 - 2 slightly different matrices are annotated in TRANSFAC for Sox2
 - The 3rd matrix reflects the composite Sox/Oct motif (SOCT).
 - This motif was obtained by the TRANSFAC team using a motif discovery algorithm on Chen data set -> not properly speaking a “golden reference” for evaluating motif discovery accuracy.



Detection of global over- or under-representation



oligo-analysis and dyad-analysis

1. van Helden, J., Andre, B. and Collado-Vides, J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. *J Mol Biol* 281, 827-42.
2. van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. *Nucleic Acids Res* 28, 1000-10.
3. van Helden, J., Rios, A. F. and Collado-Vides, J. (2000). Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. *Nucleic Acids Res* 28, 1808-18.

Peak-motifs

1. Thomas-Chollier M, Darbo E, Herrmann C, Defrance M, Thieffry D, van Helden J. 2012. A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. *Nat Protoc* 7(8): 1551-1568.

Primary result: a list of over-represented words

```
; column headers
; 1 seq oligomer sequence
; 2 identifier oligomer identifier
; 3 exp_freq expected relative frequency
; 4 occ observed occurrences
; 5 exp_occ expected occurrences
; 6 occ_P occurrence probability (binomial)
; 7 occ_E E-value for occurrences (binomial)
; 8 occ_sig occurrence significance (binomial)
; 9 rank rank
; 10 ovl_occ number of overlapping occurrences (discarded from the count)
; 11 forbocc forbidden positions (to avoid self-overlap)
#seq identifier exp_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ forbocc
ccacacc ccacacc ggtgtgg 0.0002613028663 1317 912.47 2.2e-36 3.6e-32 31.45 1 9 7902
atgcaaa atgcaaa ttgtcat 0.0003503737355 1662 1223.51 8e-33 1.3e-28 27.88 2 4 9972
ataacaa ataacaa ttgttat 0.0002422800913 1214 846.05 9.6e-33 1.6e-28 27.80 3 6 7284
atgctaa atgctaa tttagcat 0.0002118238777 1073 739.69 9.9e-31 1.6e-26 25.79 4 3 6438
atgttaa atgttaa tttaacat 0.0001301259370 709 454.40 1.6e-28 2.6e-24 23.58 5 7 4254
atgacaa atgacaa ttgtcat 0.0001973777152 992 689.25 1.7e-27 2.7e-23 22.56 6 6 5952
atttgta atttgta tacaaat 0.0001000366877 557 349.33 9.6e-25 1.6e-20 19.80 7 1 3342
atttgca atttgca tgcaaat 0.0002739332455 1286 956.58 2.6e-24 4.3e-20 19.37 8 16 7716
caaggtc caaggtc gaccttg 0.0002598346118 1215 907.35 1.6e-22 2.5e-18 17.59 9 6 7290
acaaggc acaaaggc ccttttg 0.0007523379384 3129 2627.17 1.1e-21 1.7e-17 16.76 10 0 18774
attttta attttta taaaat 0.0001255564047 652 438.44 1.1e-21 1.9e-17 16.73 11 4 3912
aaggtaa aaggtaa tgacctt 0.0003578959186 1571 1249.78 1.3e-18 2.1e-14 13.67 12 7 9426
caaaaaac caaaaaac gtttttg 0.0001378284645 684 481.30 2.1e-18 3.5e-14 13.46 13 11 4104
ccccacc ccccccacc ggtgggg 0.0004424086690 1897 1544.90 2.8e-18 4.6e-14 13.34 14 149 11382
ctttttc ctttttc gaaaaag 0.0001897760107 896 662.70 4.5e-18 7.4e-14 13.13 15 4 5376
acaaaaag acaaaaag ctttttg 0.0005914427717 2450 2065.33 1.1e-16 1.7e-12 11.76 16 0 14700
ccccctcc cccctcc ggagggg 0.0004233849461 1804 1478.47 1.5e-16 2.4e-12 11.62 17 40 10824
cttgaac cttgaac gttcaag 0.0001462757032 706 510.80 1.9e-16 3.0e-12 11.52 18 1 4236
cgcccccc cgcccccc gggggcgc 0.0001075537603 540 375.58 9.9e-16 1.6e-11 10.79 19 3 3240
atttttc atttttc gaaacat 0.0003636078790 1562 1269.72 1.3e-15 2.2e-11 10.67 20 0 9372
attagca attagca tgctaat 0.0002098395249 952 732.76 5.4e-15 8.9e-11 10.05 21 3 5712
cccaccc cccaccc ggggtggg 0.0004814771589 2001 1681.32 2e-14 3.3e-10 9.49 22 166 12006
caaggac caaggac gtccttg 0.0001695781657 785 592.17 2.5e-14 4.1e-10 9.39 23 0 4710
atgttaa atgttaa tttagcat 0.0001915519678 873 668.90 2.7e-14 4.4e-10 9.36 24 1 5238
aacacaa aacacaa ttgtgtt 0.0002376492556 1056 829.87 2.8e-14 4.5e-10 9.34 25 5 6336
; Job started 2010_10_19.201655
; Job done 2010_10_19.201704
; Seconds 8.3
```

Over-represented words reveal motif variability

- The list of over-represented words generally contain groups of mutually overlapping words.
- Those groups can be aligned using the program *pattern-assembly*
- Assembled words reveal
 - larger motifs than the initial word length
 - positions with variable residues
- Word assemblies can be used to build a matrix.
 - Assembled words are used as seed to scan input sequences for sites.
 - A new matrix is build from the collected sites.

```
;assembly # 1  seed: 2 words length 0
;alignnt rev_cpl score
ccacacc ggtgtgg 31.45
cccacc ggtgggg 13.34
                           31.45 best consensus

;assembly # 2  seed: 6 words length 0
;alignnt rev_cpl score
atgcaaa. .tttgcatt 27.88
atgctaa. .tttagcat 25.79
atgtaaa. .tttacat 9.36
.tacaaaat atttgta. 19.80
.tgcaaat atttgca. 19.37
.tgctaat atttagca. 10.05
                           27.88 best consensus

;assembly # 3  seed: 2 words length 0
;alignnt rev_cpl score
ataacaa ttgttat 27.80
atgacaa ttgtcat 22.56
                           27.80 best consensus
```

Collecting a matrix from assembled words

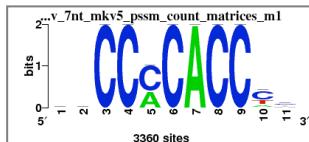
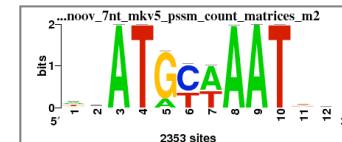
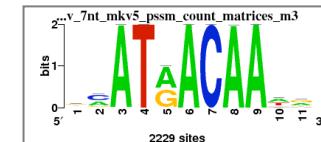
Significance matrix

- The significance matrix can be used as “seed” to scan the input sequences and collect binding sites.
- Those sites are in turn used to build a final matrix.

a	0	0	0	0	31.45	0	31.45	0	0	0	0
c	0	0	31.45	31.45	13.34	31.45	0	31.45	31.45	0	0
g	0	0	0	0	0	0	0	0	0	0	0
t	0	0	0	0	0	0	0	0	0	0	0
//											
a	0	0	27.88	0	19.8	0	27.88	27.88	27.88	0	0
c	0	0	0	0	0	27.88	0	0	0	0	0
g	0	0	0	0	27.88	0	0	0	0	0	0
t	0	0	0	27.88	0	9.36	25.79	0	0	19.8	0
//											
a	0	0	27.8	0	27.8	27.8	0	27.8	27.8	0	0
c	0	0	0	0	0	0	27.8	0	0	0	0
g	0	0	0	0	22.56	0	0	0	0	0	0
t	0	0	0	27.8	0	0	0	0	0	0	0

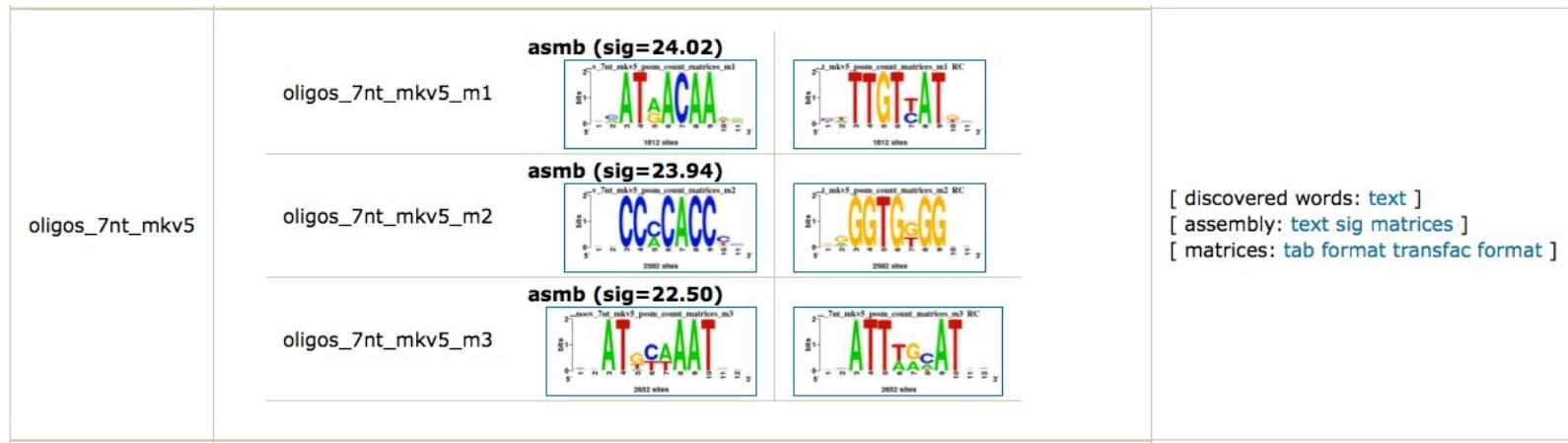
Final matrix

a	901	784	0	0	1330	0	3357	0	0	498	783
c	1033	1041	3360	3359	2026	3360	0	3360	3358	1868	1368
g	664	883	0	1	4	0	3	0	2	139	445
t	762	652	0	0	0	0	0	0	0	855	764
//											
a	902	660	2351	0	391	0	1414	2346	2353	0	504
c	268	529	0	2	0	1500	0	0	0	1	319
g	395	369	2	0	1962	0	2	0	0	1	495
t	788	795	0	2351	0	853	937	7	0	2351	661
//											
a	599	770	2228	0	1227	2229	0	2225	2229	924	749
c	457	1045	0	0	0	0	2229	1	0	246	245
g	867	259	1	0	1002	0	0	3	0	253	936
t	306	155	0	2229	0	0	0	0	0	806	299

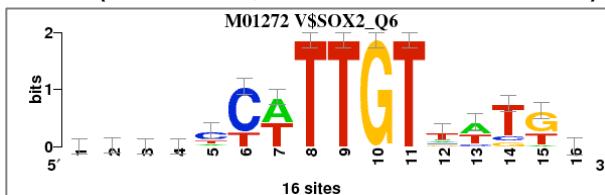


Motifs reported with oligo-analysis (Sox2 peaks from Chen, 2008)

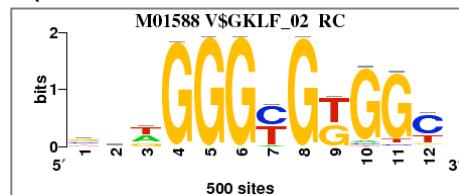
- **oligo-analysis** detects over-represented k-mers, as compared to some background model.
- For length k, we use the most stringent Markov chain model ($m = k - 2$).
- The program detects the Sox2 and Oct4 motifs.
- It also returns a Klf-like motif



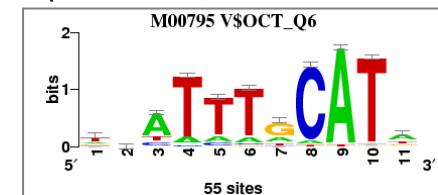
Sox2 (TRANSFAC, built from individual sites)



KLF (TRANSFAC built from Chen Klf4 set)

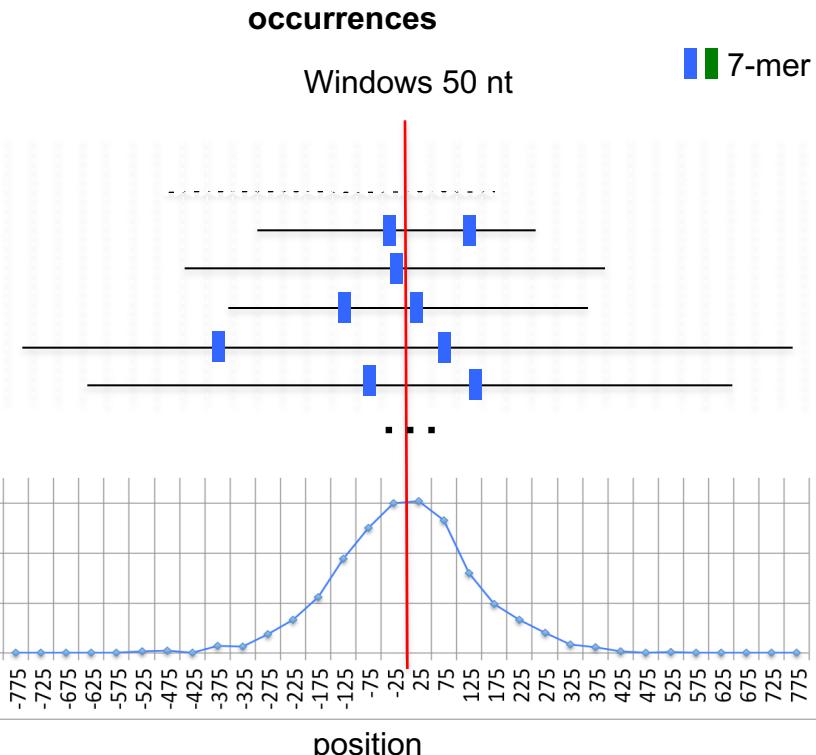


OCT (TRANSFAC, various OCT factors)

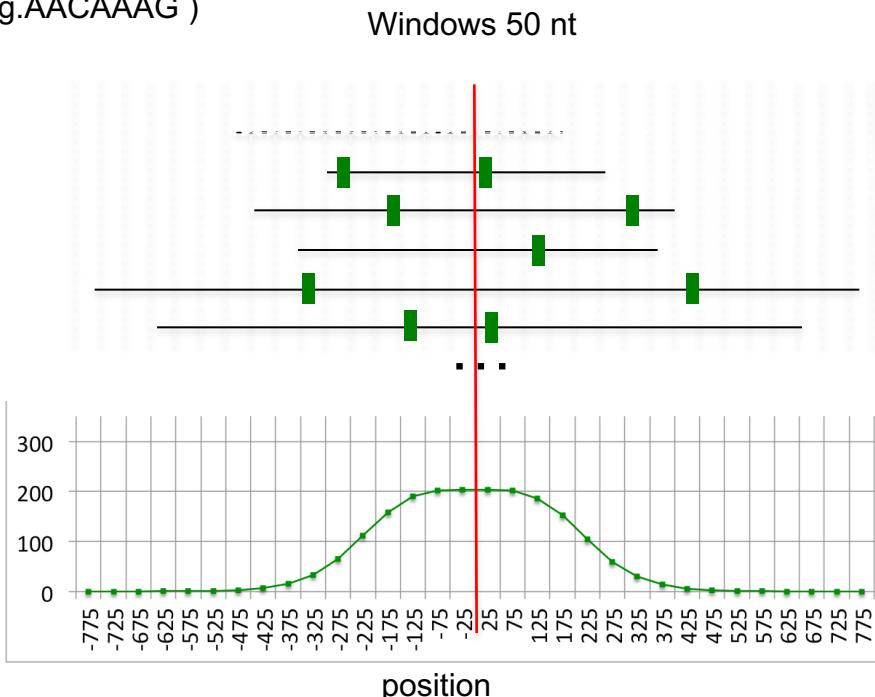


Detecting heterogeneous repartition along sequences

Observed occurrences per window

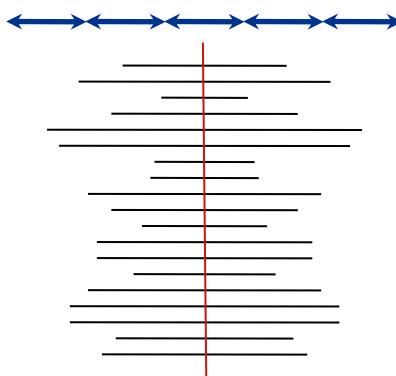
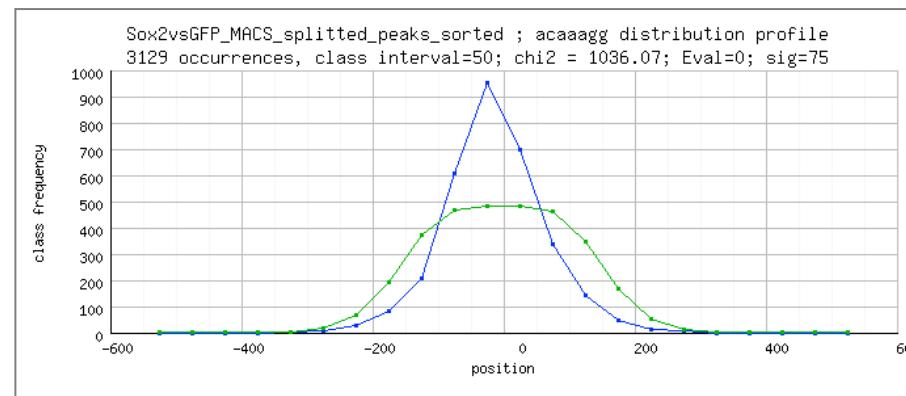


Expected occurrences per window according to an homogeneous model



Detecting k -mers with biased positional distribution

- **position-analysis** (van Helden et al., 2000) detects k -mers having a heterogeneous distribution of occurrences across input sequences.
- Principle: for each k -mer
 - Compute the number of occurrences in non-overlapping windows starting from a reference point (sequence start, center or end).
 - Compute the expected occurrences in each window according to a homogeneous distribution model.
 - Compute the difference between the observed and expected positional distribution (chi2 test for goodness of fit).
- Example: Sox2 peaks from Chen, 2008
 - 10,929 peaks of size between 60 and 1,059 bp
 - Length : $k=7$
 - Reference position: the center of each peak.
 - The most significant k -mer is ACAAAGG, which corresponds to the Sox2 consensus.



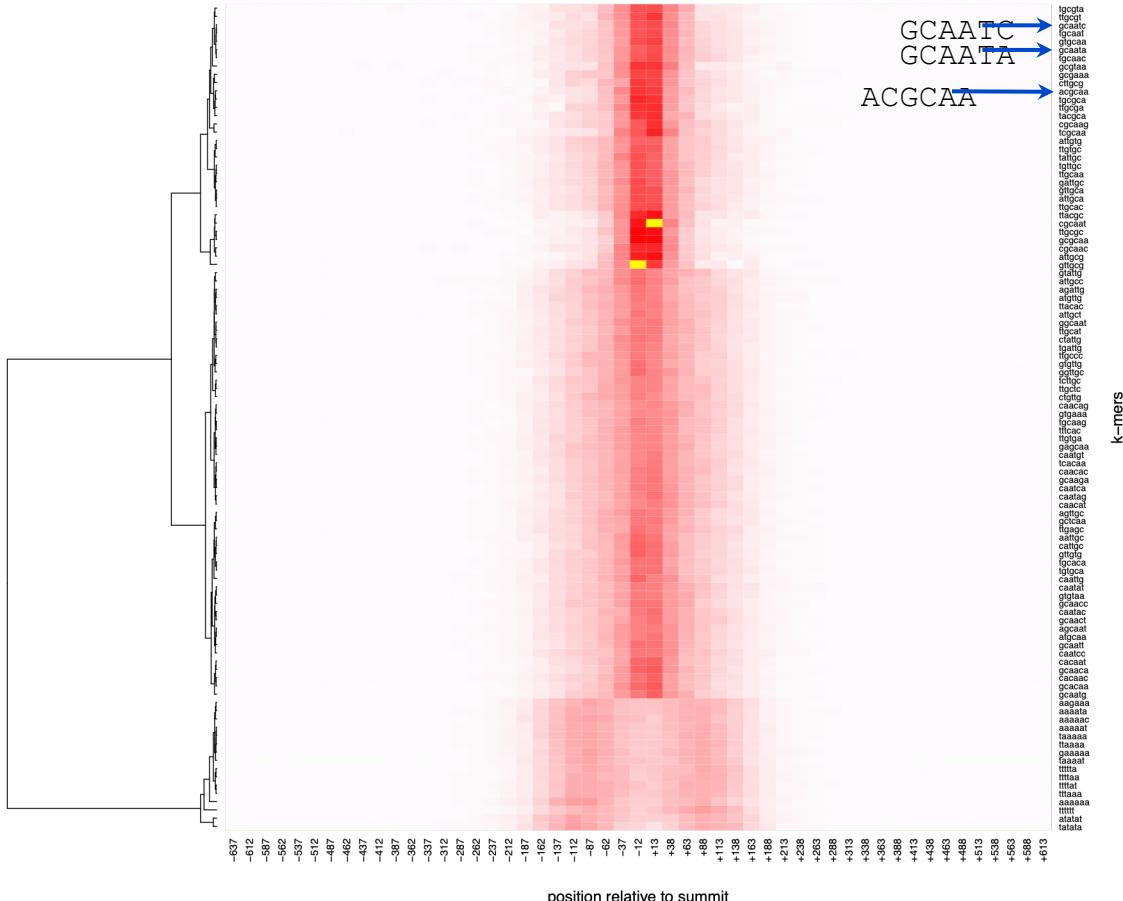
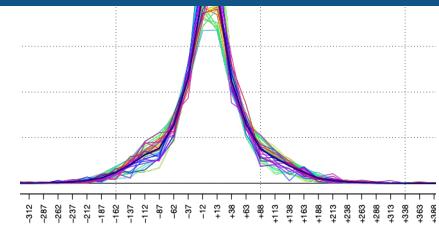
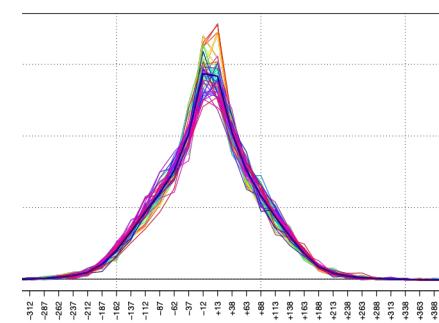
Green: expected occurrences

- Note: the expectation decreases with the distance to peak center because peaks have variable lengths.

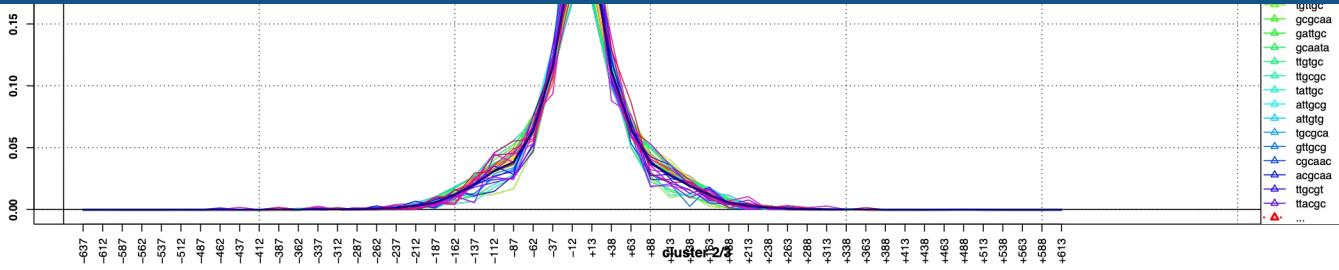
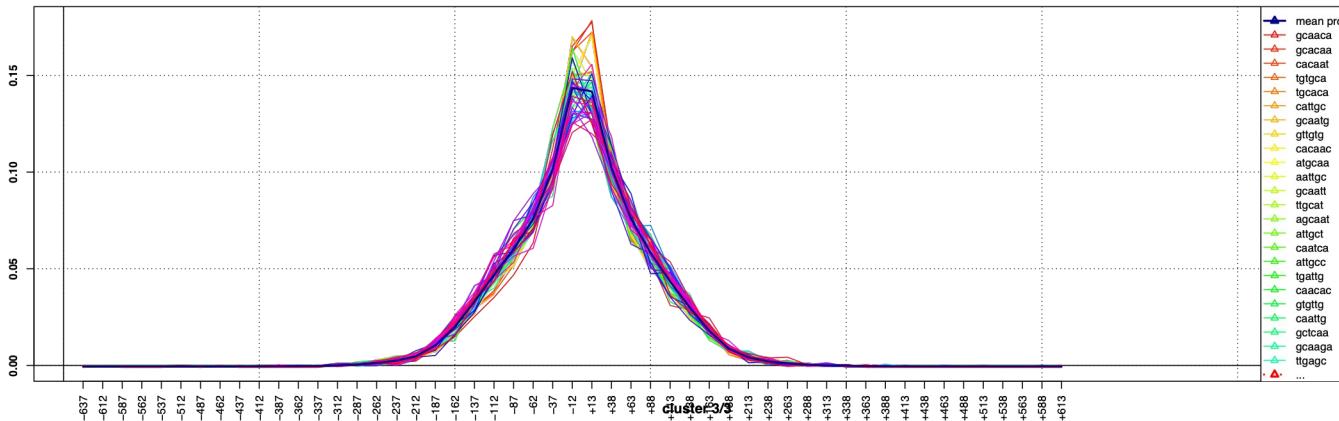
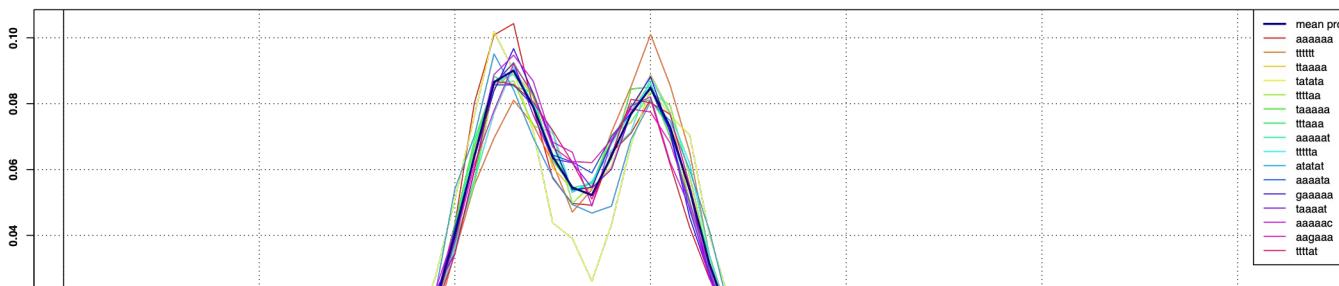
Blue: observed occurrences

- The k -mer ACAAGG is concentrated in the center of the ChIP-seq peak regions.

Clustering k-mers by positional density profiles



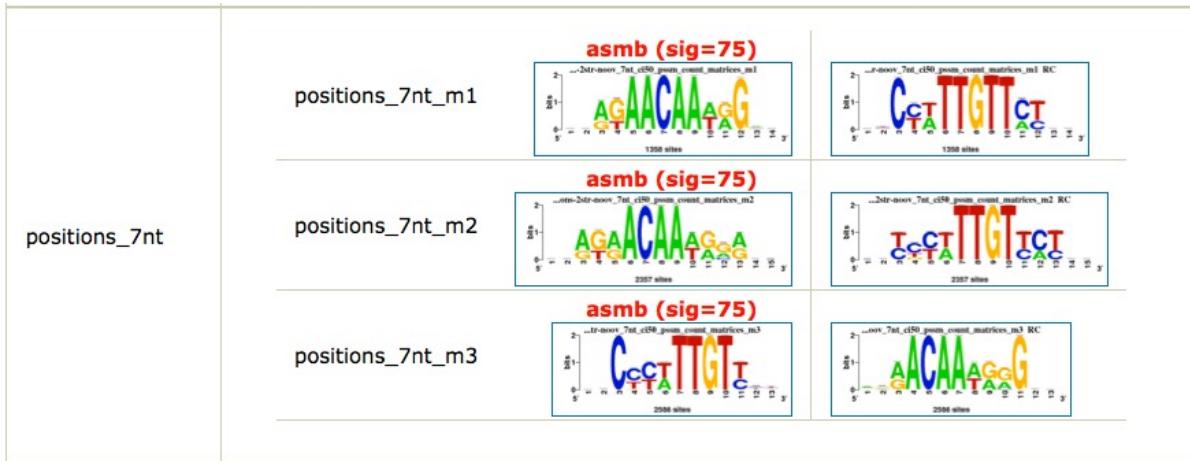
Position profile clustering



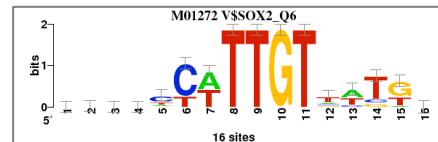
Motifs with position biases in Sox2 peaks from Chen, 2008

- position-analysis

- detects the Sox2 motif in Sox2 peaks (redundant motifs are found by different assemblies of oligonucleotides).
- The motifs of partner TFs (Oct4, Klf4) are not detected.

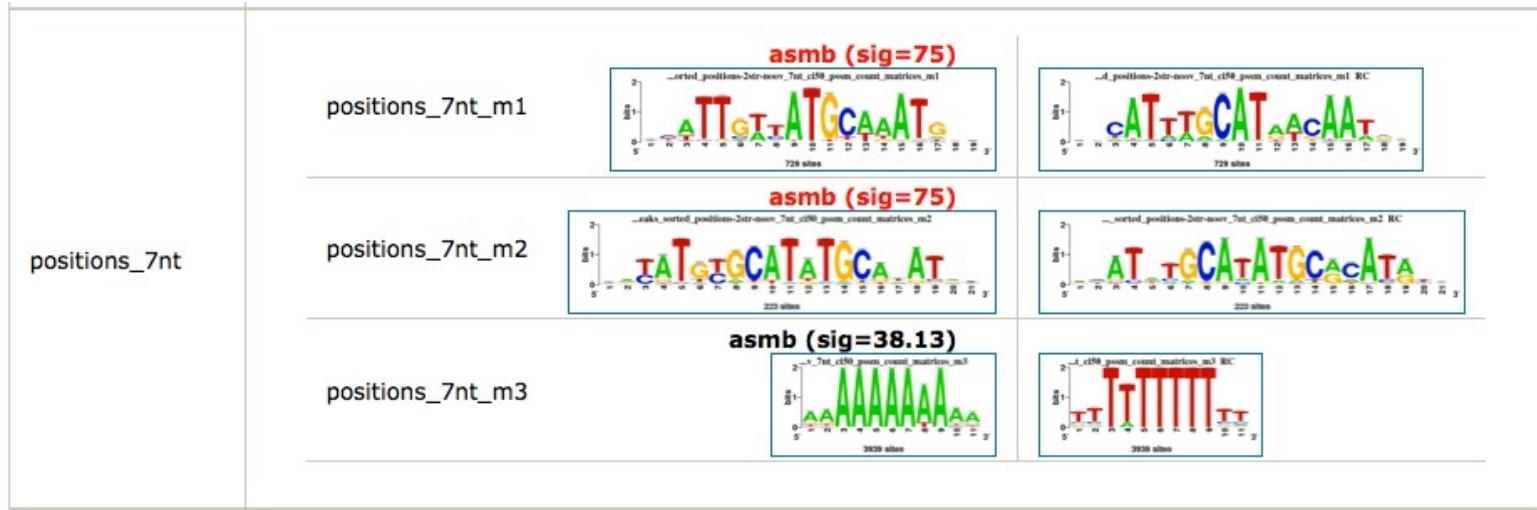


Sox2 (TRANSFAC, built from individual sites)

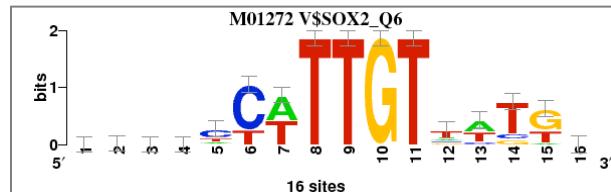


Motifs with position biases in Oct4 peaks from Chen, 2008

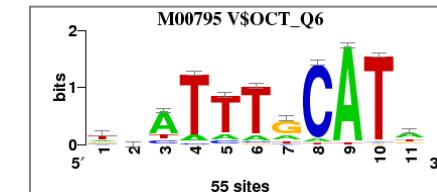
- position-analysis
 - detects the hybrid Sox/Oct motif in Oct4 peaks



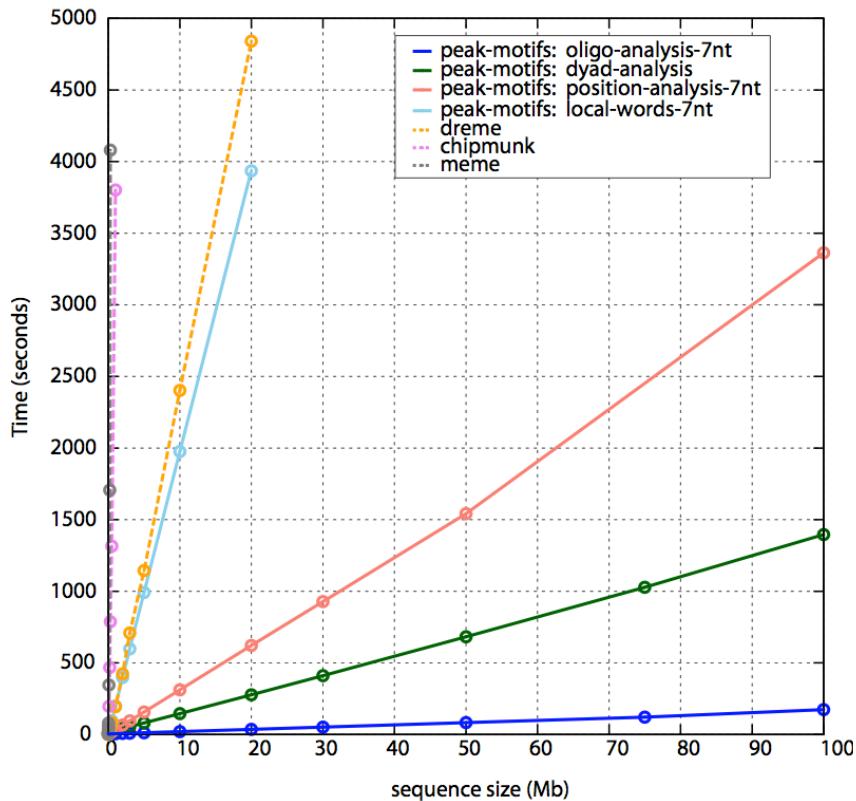
Sox2 (TRANSFAC, built from individual sites)



OCT (TRANSFAC, various OCT factors)



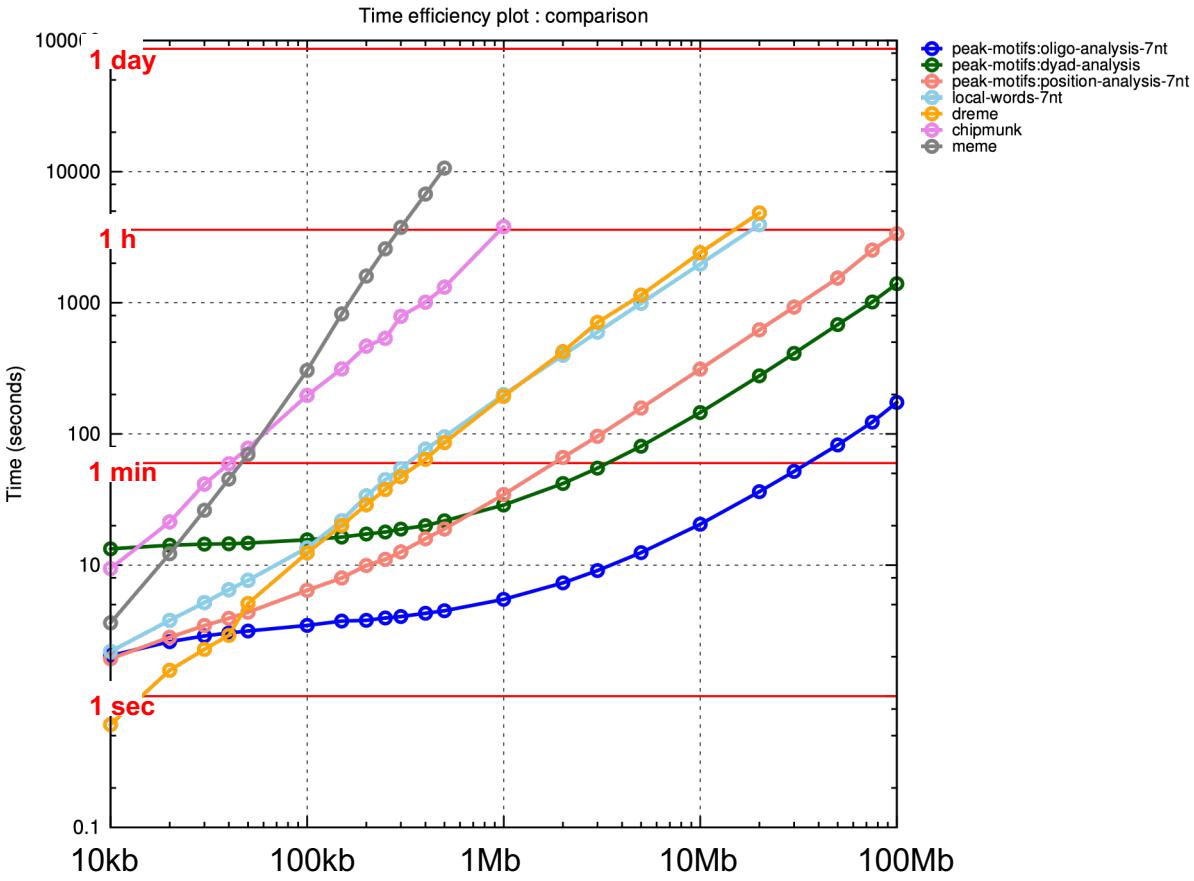
Time efficiency



- String-based approaches
 - The processing time increases linearly with sequence size.
 - The memory is principally affected by the number of patterns (oligo size) -> large sequences can be treated with moderate RAM.
- MEME
 - Processing time is quadratic.
- On a medium-priced laptop (MacBook, 2Gb RAM), the biggest files (100Mb) is treated in
 - 3 minutes with oligo-analysis;
 - 25 minutes with dyad-analysis;
 - <1 hour with position-analysis.
 - 44 years with meme (polynomial extrapolation)

- Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. 2012. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40(4): e31.

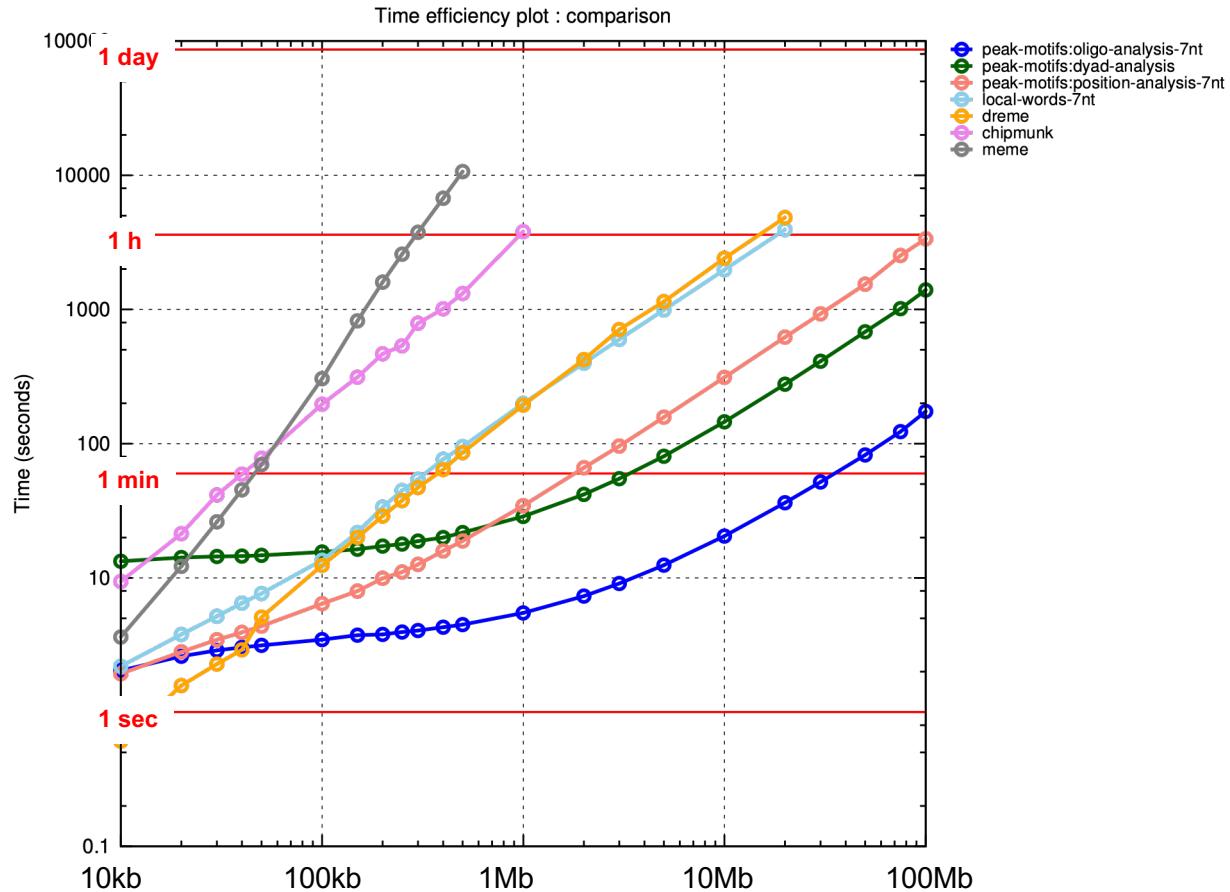
Time efficiency



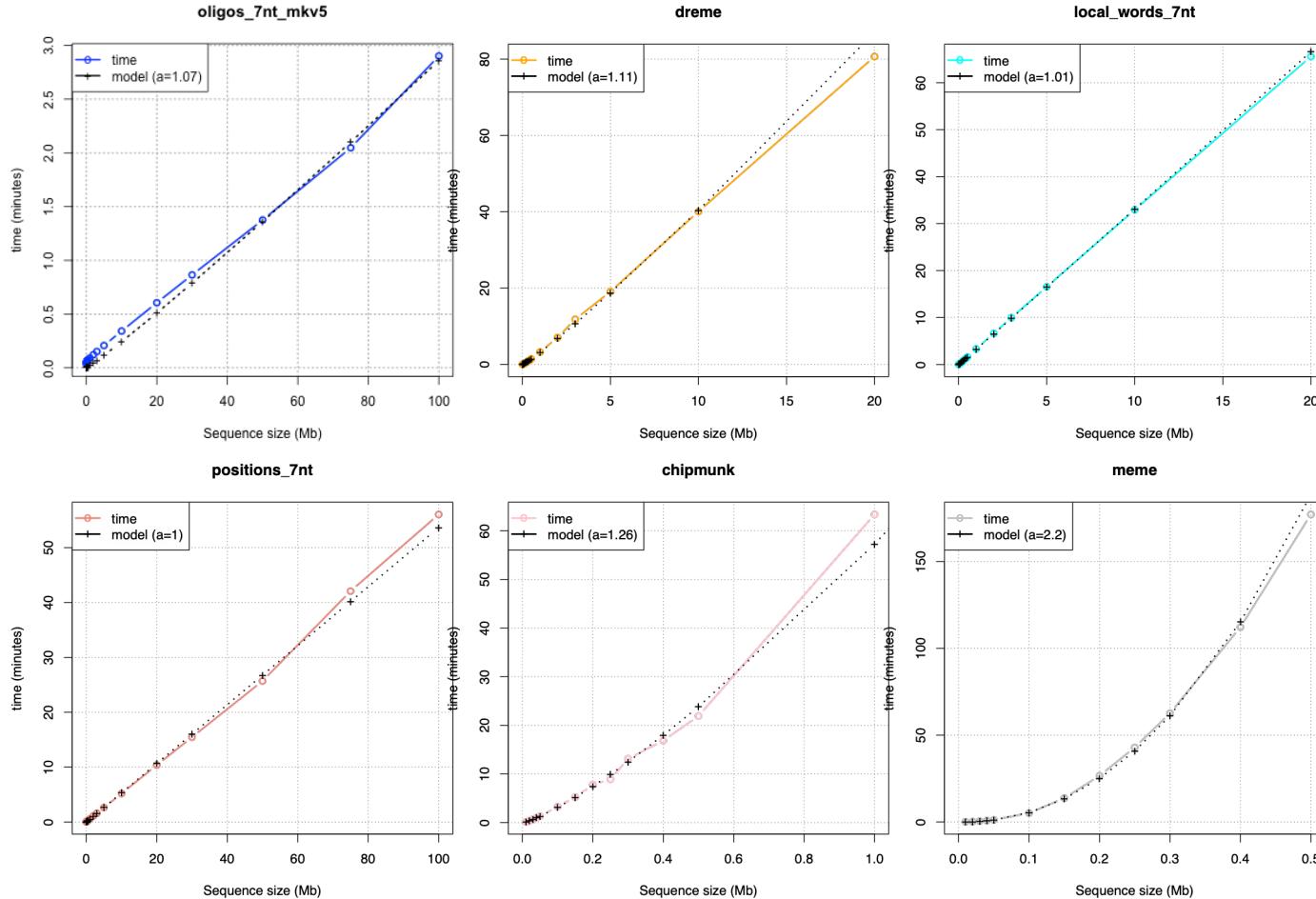
- String-based approaches
 - Time increases linearly with total sequence size.
 - Memory mostly depends on number of patterns ($N \sim 4^k$)
→ 100Mb can be treated with 2Gb RAM.
- EM or Gibbs samplers
 - Time >quadratic.
- On a medium-priced laptop (MacBook, 2Gb RAM), the biggest files (100Mb) is treated in
 - 3 minutes with oligo-analysis;
 - 25 minutes with dyad-analysis;
 - <1 hour with position-analysis.

Time efficiency does matter

- String-based approaches
 - **Linear complexity** : computing time proportional to total sequence size.
 - **Low memory usage** (depends on number of patterns: 4^k) \rightarrow 100Mb treated with 2Gb RAM.
- EM or Gibbs samplers
 - Time >quadratic.
- On a medium-priced laptop (2010 MacBook, 2Gb RAM), the biggest files (100Mb) is treated in
 - 3 minutes with oligo-analysis;
 - 25 minutes with dyad-analysis;
 - <1 hour with position-analysis.
 - 44 years with MEME (extrapolation)



Time complexity



Discovered versus reference motifs

- Discovered motifs are compared to and aligned with the reference motifs.
- The program *compare-motifs*
 - supports various scoring schemes for assessing the similarity between motifs: correlation, Euclidian, Sandelin-Wasserman, SSD, ...
 - Generates multiple (one-to-many) alignment between matrices and logos.

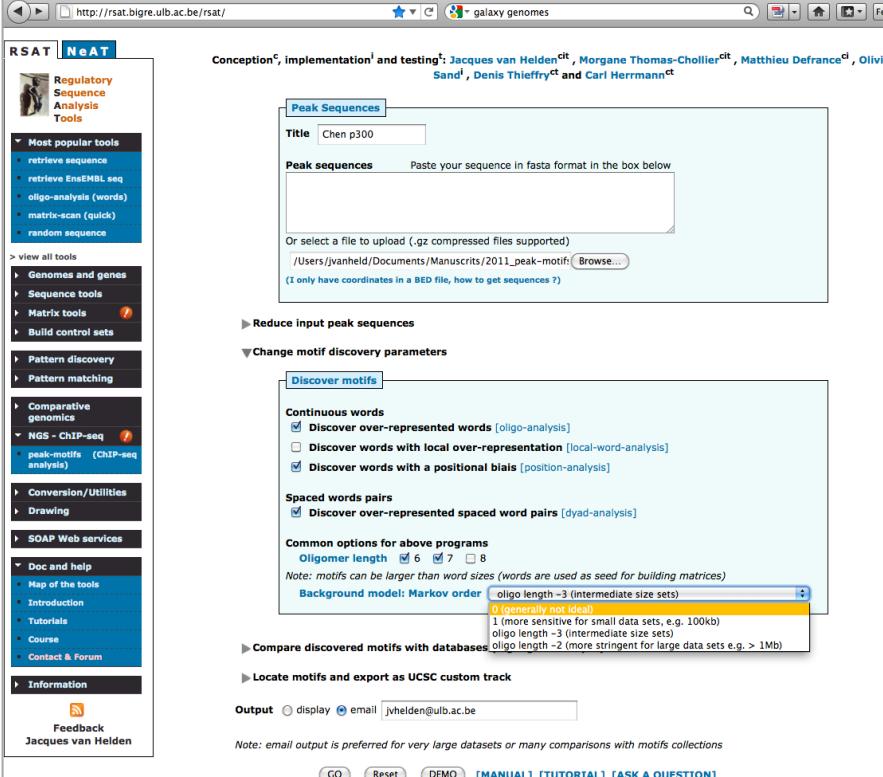
One-to-n matrix alignment; reference matrix: MA0143.1_shift3 ; 14 matrices ; sort_field=Icor

Matrix name	Aligned logos	Nicor	Icor	Ncor	cor	cov	dEucl	NdEucl	NsEucl	SSD	SW
MA0143.1_shift3 (Sox2)	<p>MA0143.1_shift3 Sox2</p> <p>669 sites</p>										
local_words_6nt_mkv4_m3_shift1 (local_words_6nt_mkv4_m3)	<p>local_words_6nt_mkv4_m3_shift1 local_words_6nt_mkv4_m3</p> <p>711 sites</p>	0.937	0.937	0.945	0.945	0.087	0.820	0.055	0.961	0.672	29.328
oligos_7nt_mkv5_m2_shift9 (oligos_7nt_mkv5_m2)	<p>oligos_7nt_mkv5_m2_shift9 oligos_7nt_mkv5_m2</p> <p>2353 sites</p>	0.584	0.778	0.632	0.843	0.073	1.100	0.122	0.914	1.210	16.790
oligos_6nt_mkv4_m1_shift9 (oligos_6nt_mkv4_m1)	<p>oligos_6nt_mkv4_m1_shift9 oligos_6nt_mkv4_m1</p> <p>1559 sites</p>	0.579	0.772	0.630	0.841	0.077	1.178	0.131	0.907	1.387	16.613
positions_7nt_m3_shift0 (positions_7nt_m3)	<p>positions_7nt_m3_shift0 positions_7nt_m3</p> <p>1214 sites</p>	0.577	0.734	0.613	0.780	0.078	1.395	0.127	0.910	1.947	20.053
oligos_7nt_mkv5_m3_rc_shift4	<p>oligos_7nt_mkv5_m3_rc_shift4 oligos_7nt_mkv5_m3_rc</p>	0.094	0.094	0.932	0.932	0.095	0.819	0.074	0.947	0.670	21.330

Discovered versus database motifs

- Discovered motifs are compared to all the motifs stored in specialized databases.
 - Public databases (accessible on the Web site) : JASPAR, PBM, RegulonDB, ...
 - TRANSFAC commercial database (requires local license).

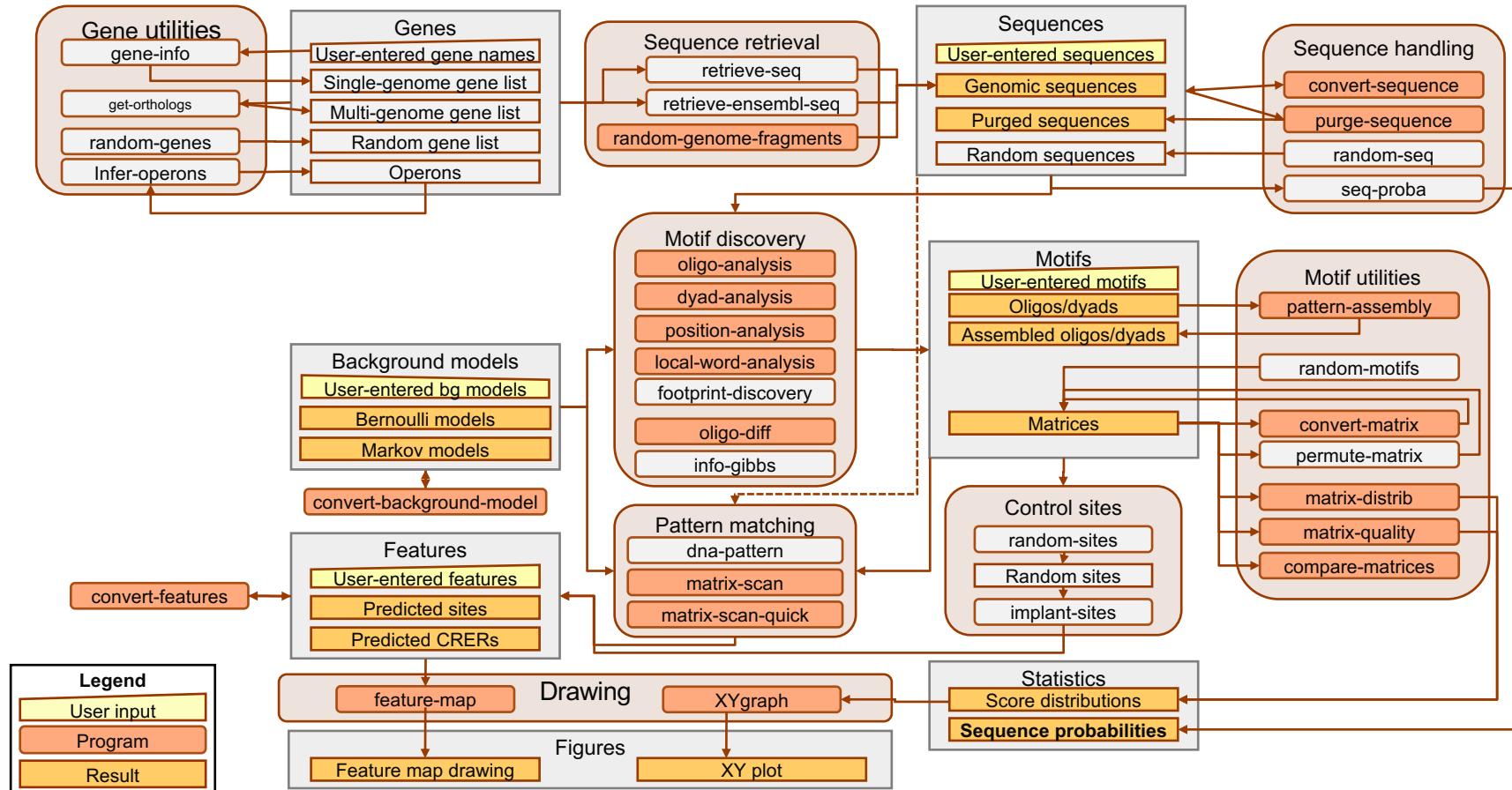
Peak-motifs – web interface



The screenshot shows the RSAT (Regulatory Sequence Analysis Tools) web interface. The main content area is titled 'Peak Sequences' and contains a text input field for 'Title' (Chen p300) and a larger text area for 'Peak sequences' with instructions to paste a sequence in FASTA format. Below this is a file upload section for compressed (.gz) files. A sidebar on the left lists 'Most popular tools' including 'retrieve sequence', 'retrieve Ensembl seq', 'oligo-analysis (words)', 'matrix-scan (quick)', and 'random sequence'. Other sections in the sidebar include 'Genomes and genes', 'Sequence tools', 'Matrix tools', 'Build control sets', 'Pattern discovery', 'Pattern matching', 'Comparative genomics', 'NGS - ChIP-seq', 'peak-motifs (ChIP-seq analysis)', 'Conversion/Utilities', 'Drawing', 'SOAP Web services', 'Doc and help' (with 'Map of the tools', 'Introduction', 'Tutorials', 'Course', 'Contact & Forum'), and 'Information' (with 'Feedback' and 'Jacques van Helden'). The bottom of the interface has buttons for 'GO', 'Reset', 'DEMO', and links to '[MANUAL]', '[TUTORIAL]', and '[ASK A QUESTION]'. A note at the bottom states: 'Note: email output is preferred for very large datasets or many comparisons with motifs collections'.

- Regulatory Sequence Analysis Tools (RSAT)
 - <http://rsat.ulb.ac.be/rsat/>
- Web interface
 - Simplicity of use (“one click” interface).
 - Advanced options can be accessed optionally.
 - Allows to analyze data set of realistic size (uploaded files).
- Tutorials
- Protocol (in prep)

RSAT tools used in the peak-motifs workflow



Measuring peak enrichment in binding sites for a transcription factor of interest

Tool : matrix-quality

Building fake peak sets for negative controls

Tools:
random-seq
random-genome-fragments
random-peaks

- DEMO

Using motifs to evaluate peak quality

The difficulty of peak identification (peak calling)

- A ChIP-seq experiment typically returns several millions of sequences (“reads”) of short size (25bp to 100bp, depending on the sequencer characteristics).
- The reads correspond to the extremities of the DNA fragments.
 - Reads are distributed on both strands
 - The peaks on the forward and reverse strand are spaced by the average length of the fragment.
 - Most of the reads do not even cover the actual binding sites.
- Peak calling programs apply various strategies to identify and score the peaks from a set of reads, but identifying regions covered by more reads than expected by chance (see Pepke et al., 2009 for a review).
- Figure
 - RMP: read per millions.

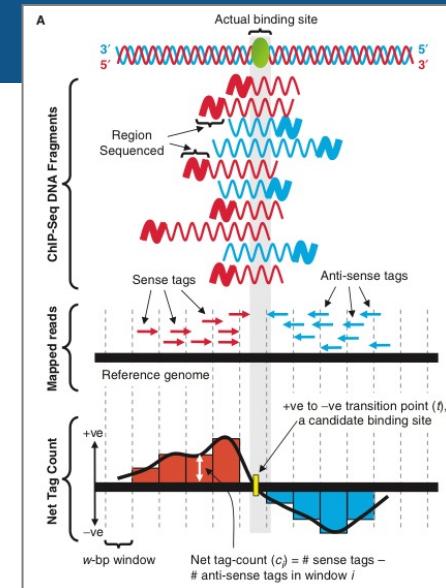
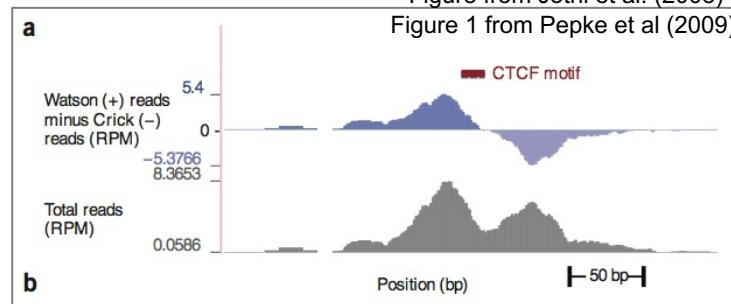


Figure from Jothi et al. (2008)
Figure 1 from Pepke et al (2009).



- Pepke et al. Computation for ChIP-seq and RNA-seq studies. Nat Methods (2009) vol. 6 (11 Suppl) pp. S22-32.
- Jothi et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res (2008) vol. 36 (16) pp. 5221-31

Question

- Which peak-caller should be used ?
 - MACS, SWEMBL, SICER, ...
 - For a comparative evaluation of peak-calling programs, see Wilbanks & Facciotti (2010).
- Should we refine regions into actual peaks ?
 - PeakSplitter
- How many peaks are relevant (at least, for motif analysis)?
 - The stringency of a peak caller software strongly depends on its tuning.
 - MACS: P-value threshold (option `-p`, from 0 to 1)
 - SWEMBL: relative background, also called “gradient” (option `-R`, from 0 to 1)

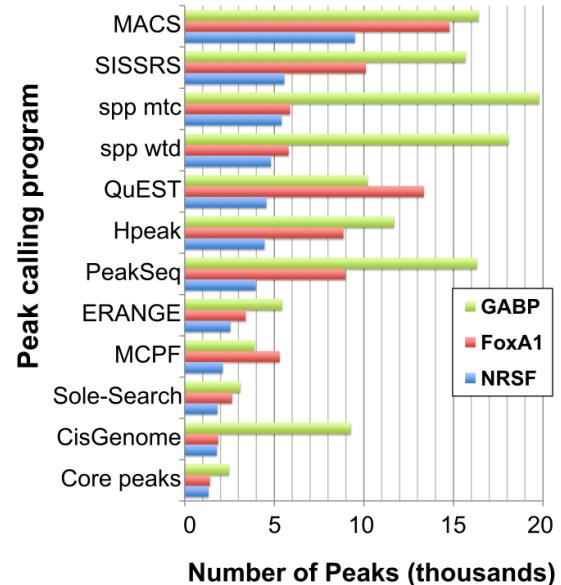


Figure 3. Quantity of peaks identified. Programs report different numbers of peaks, when run with their default or recommended settings on the same dataset. Number of reported peaks is shown for the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets. To assess how different these peak lists were, those peaks identified by all 11 methods were calculated (core peaks).

doi:10.1371/journal.pone.0011471.g003

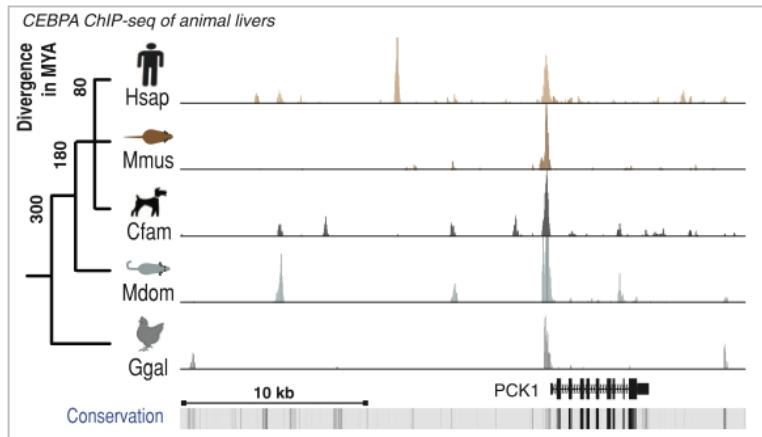
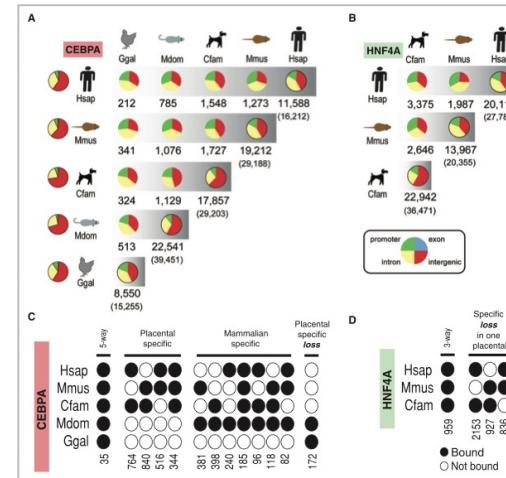
Source: Wilbanks and Facciotti (2010).

- Wilbanks EG, Facciotti MT. 2010. Evaluation of algorithm performance in ChIP-seq peak detection. Plos One 5(7): e11471.
- Pepke S, Wold B, Mortazavi A. 2009. Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11 Suppl): S22-32.

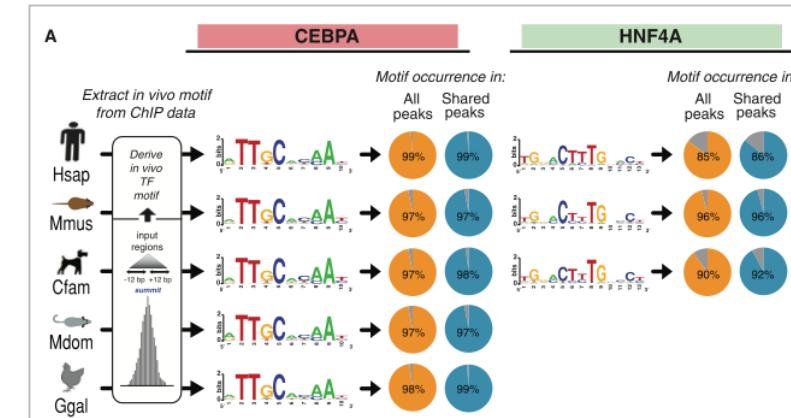
Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding

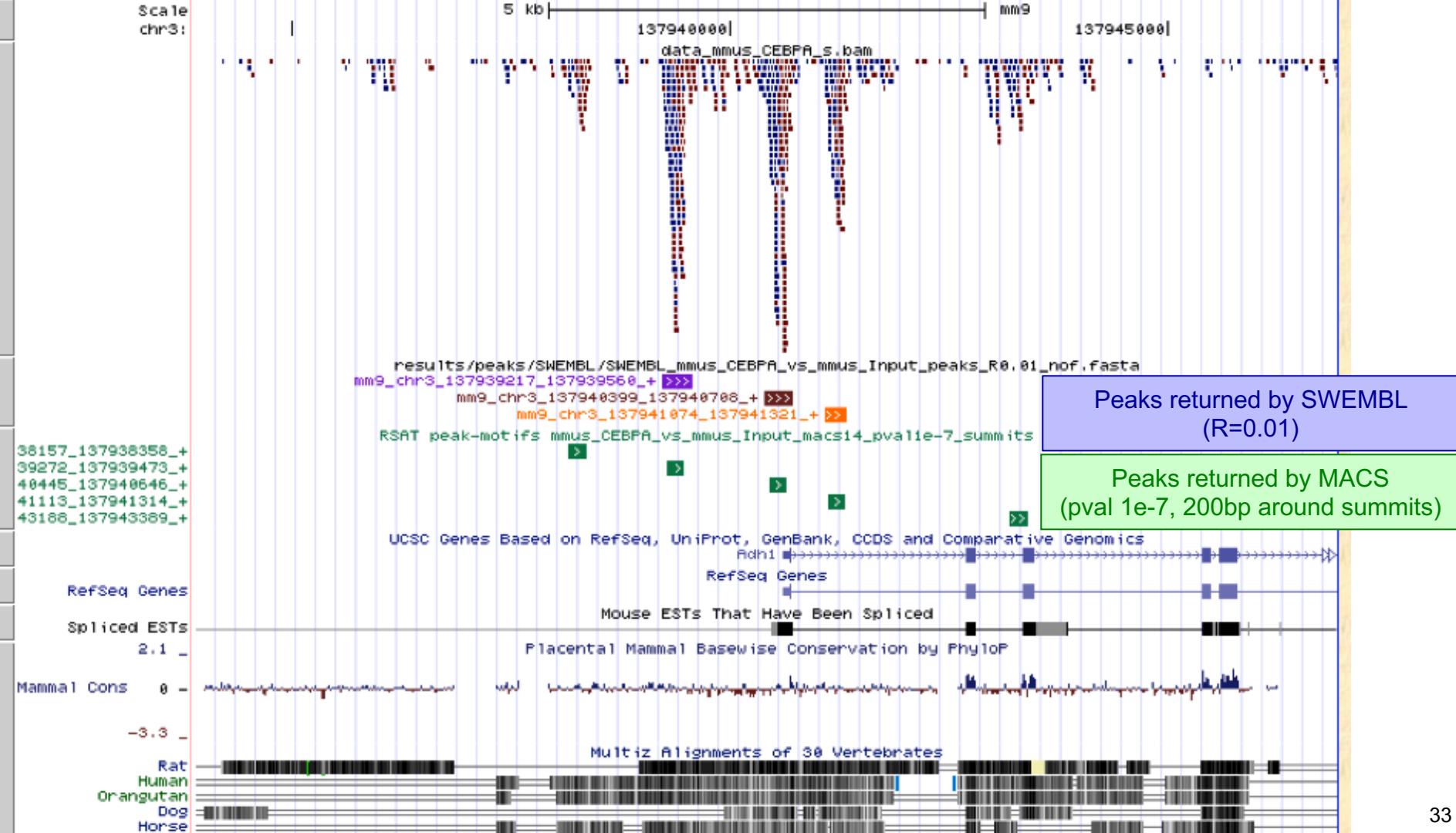
Dominic Schmidt,^{1,2*} Michael D. Wilson,^{1,2*} Benoit Ballester,^{3*} Petra C. Schwalie,³ Gordon D. Brown,¹ Aileen Marshall,^{1,4} Claudia Kutter,¹ Stephen Watt,¹ Celia P. Martinez-Jimenez,⁵ Sarah Mackay,⁶ Iannis Talianidis,⁵ Paul Flieck,^{3,7†} Duncan T. Odom^{1,2†}

Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution.



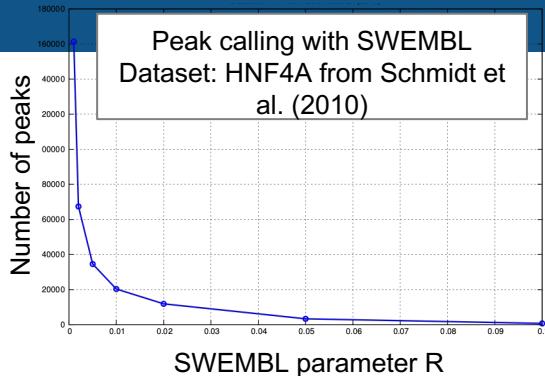
Benoît Ballester
(Ex-EBI; Now at TAGC)





How many peaks?

- A non-trivial problem for the analysis of ChIP-seq data is to define the genomic regions enriched in short reads.
- The number of peaks strongly depends on the choice of the peak-calling program and on the parameters.
- Example: identifying HFN4 binding peaks in the dataset from Schmidt et al. (2010).
 - 34M reads, against 12M reads for the “input”
 - SWEMBL identifies 720 peaks when $R=0.1$, $>160,000$ peaks when $R=0.001$.
 - MACS identifies 52,785 peaks (parameters: $mfold=10,30$, $pval=1e-5$)
- We are getting familiar with ChIP-seq reports enumerating thousands — or tens of thousands — peaks.
 - Does it correspond to our expectation about the number of binding locations for a specific TF ?
 - How should we integrate this information in our regulatory models?
- ChIP-seq reads provided by Benoît Ballester
- Data source: Schmidt et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science (2010) vol. 328 (5981) pp. 1036-40
- Tool for peak detection: SWEMBL (<http://www.ebi.ac.uk/~swilder/SWEMBL/>), developed by Stephan Wilder.



HNF4A peaks (SWEMBL)		
R	# peaks	Size (Mb)
0.1	720	0.2
0.05	3,346	0.9
0.02	11,901	3.5
0.01	20,356	5.8
0.005	34,569	9.5
0.002	67,403	15.5
0.001	161,341	25.2

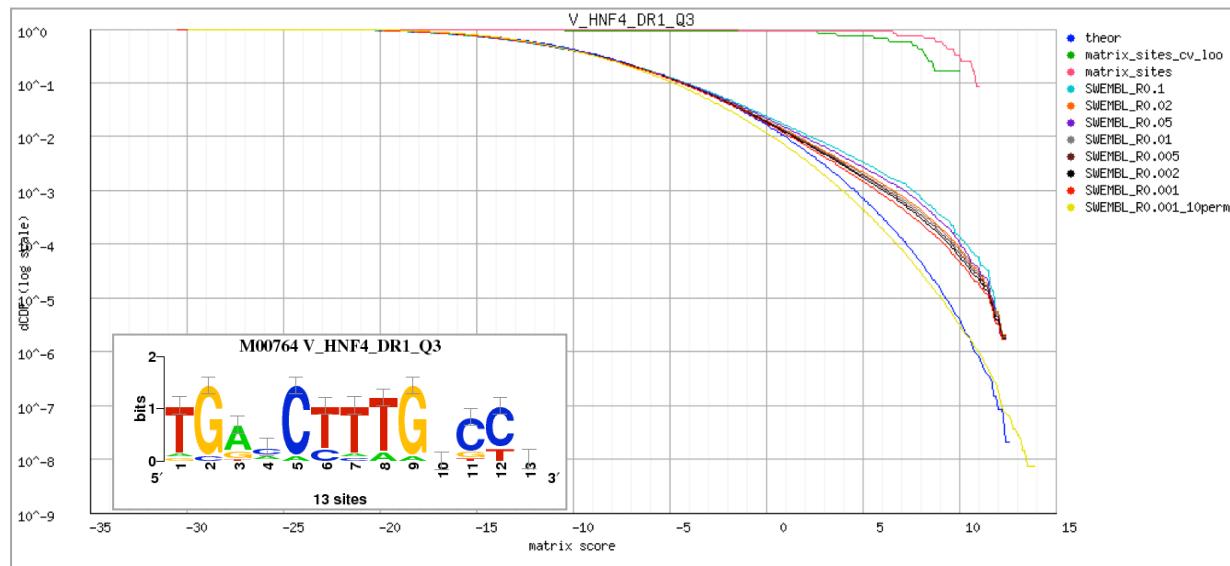
CEBPA peaks (SWEMBL)		
R	# peaks	Size (Mb)
0.1	1,271	0.4
0.05	5,942	1.7
0.02	16,999	5.3
0.01	28,668	8.5
0.005	48,442	13.4
0.002	104,052	22.1
0.001	185,885	29.2

Peak annotation

- Context: we saw that there are many peak callers, and that the number of peaks varies depending on some parametric choices.
How to evaluate the choices ?
- Significance
 - Compare discovered motif significance in actual peak with random genomic regions of the same sizes.
- Consistency
 - Compare peak sets returned by different peak callers
- Motif analysis
 - Compare the enrichment of the different peak sets for the reference motif
 - If not reference motif: compare relative enrichment for discovered motifs
- Peak annotation
 - Check the fraction of peaks in genomic regions compatible with regulation (promoters, introns)
 - Eukaryotes: compare peak sets with histone marks associated with enhancers
 - Phylogenetic conservation of predicted binding sites
- Validation
 - If a reference collection of sites is available, evaluate the overlap
 - Note: we can only evaluate the sensitivity, not the specificity since all site databases are incomplete.

Peak enrichment for the reference motif (matrix-quality)

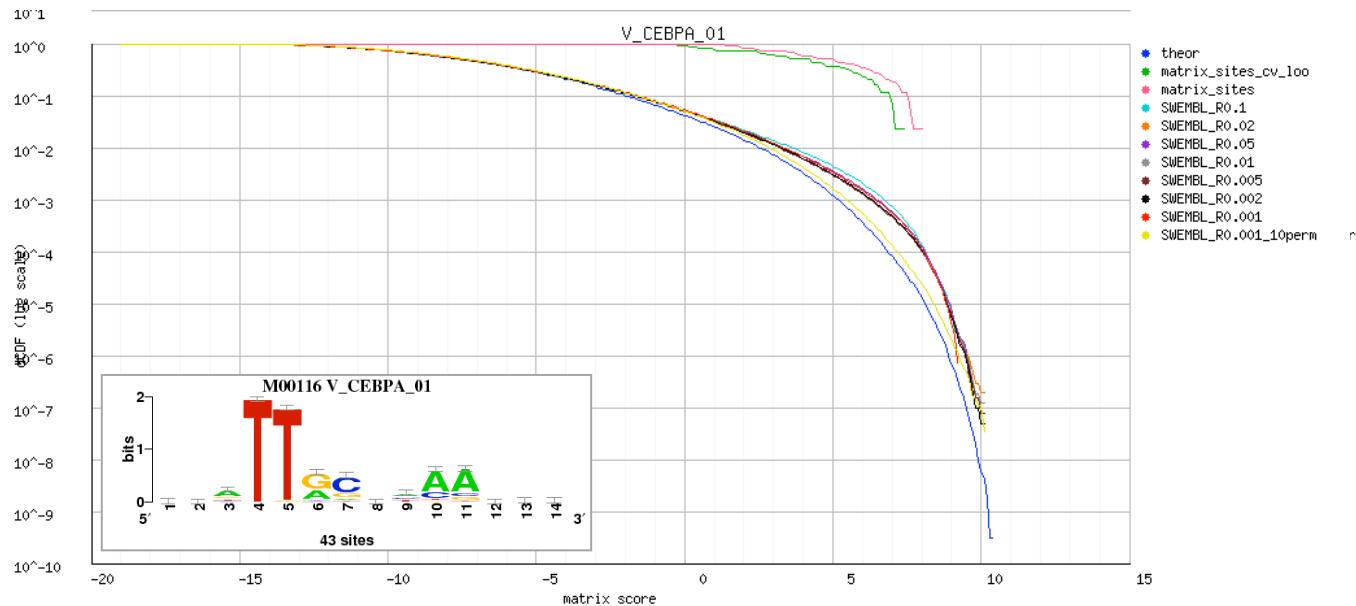
- Empirical distribution of matrix scores indicate the relative enrichment of peak sequences for the reference motif.
- Basically, the enrichment decreases when we collect more peaks (specificity decrease).
- However, we also collect more bona fide sites (sensitivity increase). ☺



- Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011). Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.
- Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040.

Peak enrichment for the reference motif (matrix-quality)

- Relative enrichment of peak collections for the reference motif
 - Data: With CEBPA reads from Schmidt, Wilson & Ballester
 - SWEMBL returns stronger enrichment than MACS.



- Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011). Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.
- Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040.

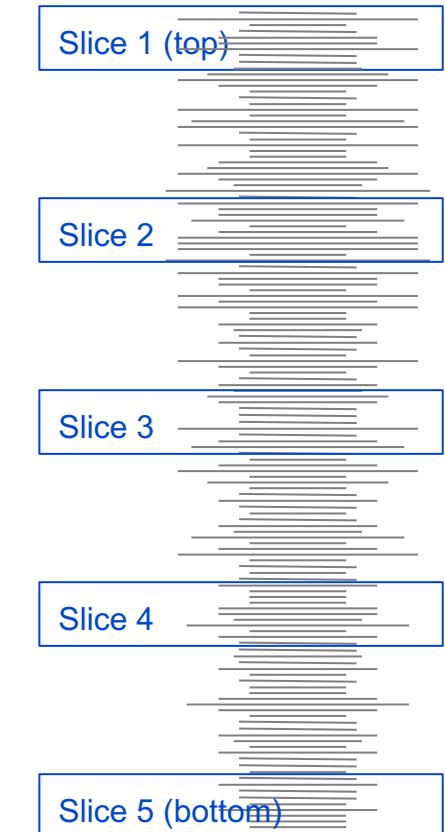
What did we learn so far ?

- Peak calling is not trivial
 - Peak numbers are strongly affected by the algorithm (MACS, SWEMBL, ...) and parametric choices.
 - Sensitivity/specificity trade-off
 - The more peaks, the more sites.
 - But: enrichment progressively fades out.
 - All algorithms are not alike
 - With our test case, SWEMBL returns better peaks than MACS (higher enrichment for the reference motif).
- Epistemological question
 - High-throughput mind now considers normal for a TF to bind thousands, or even tens or thousands places in the genome.
 - Transcription factors may indeed spend their time to flirt with DNA, rather than bind for life to the same location.
 - However, this raises a new question: how can TFs ensure their function this way?

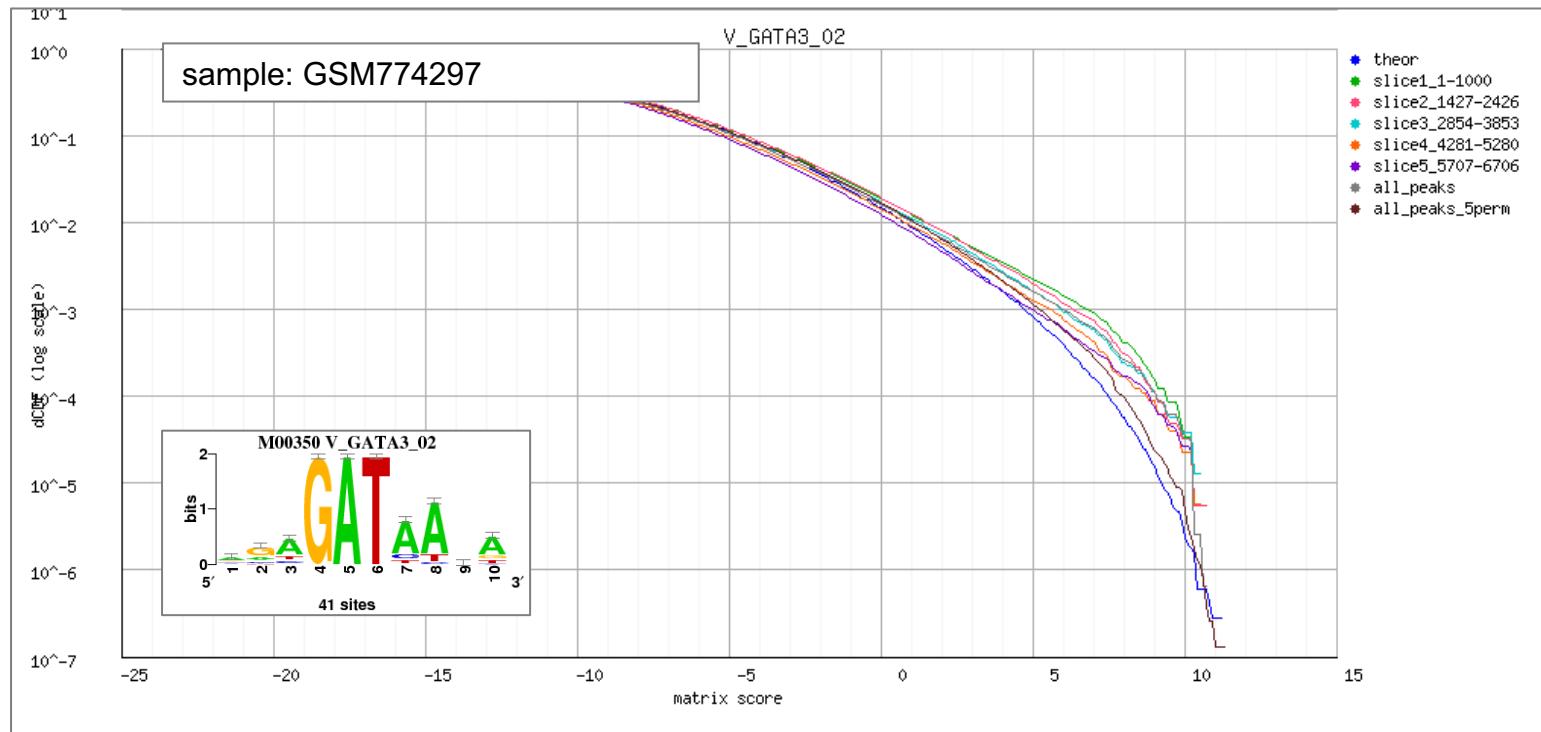
Evaluating the quality of peak collections

Slicing the peak collection

- Recipe
 - Sort peaks by decreasing score
 - Select
 - n top peaks (“top slice”)
 - n bottom peaks (“bottom slice”)
 - a few intermediate slices of n peaks
 - Analyse enrichment for a reference motif (annotated or discovered from the data) in the successive slices.



GATA3 – reasonably good peak collection



GATA3 – poor quality peak collection

- The top slice shows some enrichment
- The other slices are no more enriched than the theoretical (random) expectation
- Negative control: scanning sequences with permuted matrices fits the theoretical expectation.

