Analyzing ChIP-seq (and related)

peaks with RSAT




RSAT peak-motifs :

discovering motifs in full-size peak sets




An integrated workflow for analyzing ChIP-seq peaks

" The program peak-motifs is a work flow combining a series of RSAT tools
optimized for discovered motifs in large sequence sets (tens of Mb)
resulting from ChIP-seq experiments..

" Multiple pattern discovery algorithms

o Global over-representation
o Positional biases
a Local over-representation
" Discovered motifs are compared with
&) motif databases
o user-specified reference motifs.

] Prediction of binding sites, which can be uploaded as custom annotation
tracks to genome browsers (e.g. UCSC) for visualization.

" Interfaces

o Stand-alone

=] Web interface
0 Web services (SOAP/WSDL)
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Composition analysis

= Analysis of the input sequence composition
o Nucleotide composition + positional distribution

o Dinucleotide composition reveals dependencies such as CpG islands

Sequence composition (peak sequences)

Nb of peaks: 8014 3 *
Total seq. size: 2777 kb
Min length: 60 bp

Mean length: 346.457 bp
Max length: 1059 bp 100

Nuber of peak

Sequence lengths; Sox2vsGFP_MACS_fdr0.02_splitted_peaks_sorted
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[ seq: converted purged ]
[ lengths: list distrib graph ]

[ 1nt: freq transitions ]
[ bg model: Inclusive format ]
[ profile: table htmi(individual) ]

[ 2nt: freq transitions ]
[ bg model: Inclusive format ]
[ profile: table htmi(individual) ]



Composition analysis results

u The composition analysis reveals differences between data sets.
Sox2 and Ctcf peaks: clear avoidance of CpG dinucleotides.

[u]

[u]

[u]

n-Myc peaks appear as CpG island (the avoidance of CpG is relaxed).
The center of Ctcf peaks shows a strong depletion in AA, TT, AT and TA.
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User-specified reference motifs (the “expected” answer)

n One or several reference motifs can be defined.

= Reference motifs are the ones which are expected to be found in the dataset.
More precisely, if those motifs are not reported, it is considered as a failure.

[u]

u Choice of reference motifs is somewhat tricky.

[u]

Example: Sox2 peaks

® 2 slightly different matrices are annotated in TRANSFAC for Sox2
® The 3" matrix reflects the composite Sox/Oct motif (SOCT).

®  This motif was obtained by the TRANSFAC team using a motif discovery algorithm on Chen data set -> not properly speaking a

“golden reference” for evaluating motif discovery accuracy.

Reference motif
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Detection of global over- or under-representation

Observed 6-mer
occurrences computed
from:

6-mer
(e.g.AACAAA)

Expected 6-mer
occurrences computed
from:

Background sequences
(when available)

Observed vs expected 6-
mer occurrences

Test sequences

OR

— Theoretical k-mers
frequencies from test
sequences

Observed (test sequences)

=>» computation of p-value (binomial) and 0 1000 2000 3000 4000 5000 6000 7000

E-value (multi-testing correction) Expected occurrences(5th order Markov model)

oligo-analysis and dyad-analysis

1. vanHelden, J., Andre, B. and Collado-Vides, J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol
Biol 281, 827-42.

2. vanHelden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28, 1000-
10.

3. van Helden, J., Rios, A. F. and Collado-Vides, J. (2000). Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res 28, 1808-18.

Peak-motifs

1. Thomas-Chollier M, Darbo E, Herrmann C, Defrance M, Thieffry D, van Helden J. 2012. A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs.
Nat Protoc 7(8): 1551-1568.
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Primary result: a list of over-represented words
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#seq
ccacacc
atgcaaa
ataacaa
atgctaa
atgttaa
atgacaa
atttgta
atttgca
caaggtc
acaaagg
attttta
aaggtca
caaaaac
ccccacc
ctttttce
acaaaag
ccecctece
cttgaac
cgcccee
attgttce
attagca
cccaccce
caaggac
atgtaaa
aacacaa

; Job started
; Job done
; Seconds

column headers

seq
identifi
exp_freq
occ
exp_occ
occ_P
occ_E
occ_sig
rank

10 ovl_occ
11 forbocc
identifier
ccacacc |ggtgtgg
atgcaaa|tttgcat
ataacaa|ttgttat
atgctaa|ttagcat
atgttaa|ttaacat
atgacaa|ttgtcat
atttgta|tacaaat
atttgca|tgcaaat
caaggtc | gaccttg
acaaagg | cctttgt
attttta taaaaat
aaggtca|tgacctt
caaaaac | gtttttg
ccccace | ggtgggg
ctttttc|gaaaaag
acaaaag | cttttgt
cccctece | ggagggg
cttgaac | gttcaag
cgcccece | gggggcy
attgttc|gaacaat
attagca|tgctaat
cccacce | gggtggg
caaggac |gtccttg
atgtaaa|tttacat
aacacaa | ttgtgtt
2010_10_
2010_10_
8.3

O~ U e W=

oligomer
oligomer
expected
observed
expected

er

rank

sequence
identifier
relative frequency
occurrences
occurrences
occurrence probability (binomial)
E-value for occurrences (binomial)
occurrence significance (binomial)

number of overlapping occurrences (discarded from the count)
forbidden positions (to avoid self-overlap)

exp_freq
0.0002613028663
0.0003503737355
0.0002422800913
0.0002118238777
0.0001301259370
0.0001973777152
0.0001000366877
0.0002739332455
0.0002598346118
0.0007523379384
0.0001255564047
0.0003578959186
0.0001378284645
0.0004424086690
0.0001897760107
0.0005914427717
0.0004233849461
0.0001462757032
0.0001075537603
0.0003636078790
0.0002098395249
0.0004814771589
0.0001695781657
0.0001915519678
0.0002376492556
19.201655
19.201704

occ
1317
1662

2001

1056

exp_occ occ_P

912.47 2.2e-36
1223.51 8e-33

846.05 9.6e-33
739.69 9.9e-31
454.40 1.6e-28
689.25 1.7e-27
349.33 9.6e-25
956.58 2.6e-24
907.35 1l.6e-22
2627.17 1l.le-21
438.44 1l.le-21
1249.78 1.3e-18
481.30 2.le-18
1544.90 2.8e-18
662.70 4.5e-18
2065.33 1l.le-16
1478.47 1.5e-16
510.80 1.9e-16
375.58 9.9e-16
1269.72 1.3e-15
732.76 5.4e-15
1681.32 2e-14

592.17 2.5e-14
668.90 2.7e-14
829.87 2.Be-14

occ_E

3.6e-32
1.3e-28
1.6e-28
1.6e-26
2.6e-24
2.7e-23
1.6e-20
4.3e-20
2.5e-18
1.7e-17
1.9e-17
2.1le-14
3.5e-14
4.6e-14
7.4e-14
1.7e-12
2.4e-12
3.0e-12
l.6e-11
2.2e-11
8.9e-11
3.3e-10
4.1le-10
4.4e-10
4.5e-10

occ_sig rank

31.45 1
27.88 2
27.80 3
25.79 4
23.58 5
22.56 6
19.80 7
19.37 8
17.59 9
16.76 10
16.73 11
13.67 12
13.46 13
13.34 14
13.13 15
11.76 16
11.62 17
11.52 18
10.79 19
10.67 20
10.05 21
9.49 22
9.39 23
9.36 24
9.34 25

ovl_occ

NMHOHWOWHBOBHK-NIBOONHKHO - WO B WO
-
(=]

forbocc
7902
9972
7284
6438
4254
5952




Over-represented words reveal motif variability

m  The list of over-represented words ;assembly # 1 seed: 2 words length
generally contain groups of mutually ;alignt rev_cpl score
overlapping words. ccaracc ggtgtgg 31.45
_ ) c acc ggtgggg 13.34

m  Those groups can be aligned using the 31.45 bast CORSAnILS

program pattern-assembly
;assembly # 2 seed: 6 words length 0

= Assembled words reveal -
;alignt rev_cpl score

o larger motifs than the initial word .tttgcat 27.88
length .ttagcat 25.79

. . . . .tttacat 9.36
o positions with variable residues atttgta. 19.80
= Word assemblies can be used to build a atttgca. 19.37
matrix. attagca. 10.05

o Assembled words are used as seed to 27.88 best consensus

scan input sequences for sites. ;assembly # 3 seads 2 words length 0
o A new matrix is build from the ;alignt rev_cpl score
collected sites. afapcaa ttgttat 27.80
afijgacaa ttgtcat 22.56

27.80 best consensus




Collecting a matrix from assembled words

= The significance matrix can be used as “seed” to scan the input sequences and collect binding sites.
= Those sites are in turn used to build a final matrix.

a 0 0 0 0 31.45 0 31.45 0 0 0 0
c 0 0 31.45 31.45 13.34 31.45 0 31.45 31.45 0 0
g 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0
/7
a 0 0 27.88 0 19.8 0 27.88 27.88 27.88 0 0 0
c 0 0 0 0 0 27.88 0 0 0 0 0 0
g 0 0 0 0 27.88 0 0 0 0 0 0 0
t 0 0 0 27.88 0 9.36 25.79 0 0 19.8 0 0
//
a 0 0 27.8 0 27.8 27.8 0 27.8 27.8 0 0
c 0 0 0 0 0 0 27.8 0 0 0 0
g 0 0 0 0 22.56 0 0 0 0 0 0
t 0 0 0 27.8 0 0 0 0 0 0 0

. . a 901 784 0 0 1330 0 3357 0 0 498 783

Final matrix |c 1033 1041 3360 3359 2026 3360 0 3360 3358 1868 1368
g 664 883 0 1 4 0 3 0 2 139 445
t 762 652 0 0 0 0 0 0 0 855 764
/7
a 902 660 2351 0 391 0 1414 2346 2353 0 504 740
c 268 529 0 2 0 1500 0 0 0 1 319 479
g 395 369 2 0 1962 0 2 0 0 1 869 495
t 788 795 0 2351 0 853 937 7 0 2351 661 639
1/
a 599 770 2228 0 1227 2229 0 2225 2229 924 749
c 457 1045 0 0 0 0 2229 1 0 246 245
g 867 259 1 0 1002 0 0 3 0 253 936
t 306 155 0 2229 0 0 0 0 0 806 299
-.v_Tnt_mkv5_pssm_count_matrices_m1 00V Tnt_mkvS_pssm_count_matrices_m2 ..v_Tnt_mkv5_pssm_count_matrices_m3
== [ © ~Nwo o - == S e Wil g
3 5 b= 5 e
3360 sites 2353 sites 2229 sites

10



Motifs reported with oligo-analysis (Sox2 peaks from Chen, 2008)

= oligo-analysis detects over-represented k-mers, as compared to some background model.
= For length k, we use the most stringent Markov chain model (m =k — 2).

»  The program detects the Sox2 and Oct4 motifs.

= It also returns a Klf-like motif

asmb (slg 24, 02)

oligos_7nt_mkv5_m1 AT— Py ﬁ TZAT

..-...- ...: B A
¢ e

asmb (sug 23.94)

kg comnt_matrices_ml P —— Ty

. & [ discovered words: text ]
oligos_7nt_mkv5 oligos_7nt_mkv5_m2 cc?c Cc i [ assembly: text sig matrices ]
""""""" £ ¢=RRRATINY, ¢, [ matrices: tab format transfac format ]

oligos_7nt_mkv5_m3 . — AT ;é A AT ’ § _Aﬁ;ACAT

Sox2 (TRANSFAC, built from individual sites) KLF (TRANSFAC built from Chen Kif4 set) OCT (TRANSFAC, various OCT factors)
) M01272 V$SOX2_ Q6 ) MO1588 V$GKLF_02 RC M00795 V$OCT_Q6
TT T T 10 * Trr.CAT
‘ x < (o T
- L & IYTTQOOF —/.A_-:TJL-: 0‘:73?<rm@-?li-o o 6 = & O_IE_ Aw???wmoé
5~ v - - v - " g 5 - - -3 5 -
16 sites 500 sites 55 sites

=11



Detecting heterogeneous repartition along sequences

Observed occurrences per window Expected occurrences per window
according to an homogeneous model

occurrences

Bl 7-mer (e.g.AACAAAG )

Windows 50 nt Windows 50 nt

300

200

100 100

200 1 i

occurrences

Drawing by Elodie Darbo. 12



Detecting k-mers with biased positional distribution

] position-analysis (van Helden et al., 2000) detects k-mers having a heterogeneous distribution of occurrences across input sequences.
] Principle: for each k-mer
o Compute the number of occurrences in non-overlapping windows starting from a reference point (sequence start, center or end).
o Compute the expected occurrences in each window according to a homogeneous distribution model.
o Compute the difference between the observed and expected positional distribution (chi2 test for goodness of fit).
] Example: Sox2 peaks from Chen, 2008
o 10,929 peaks of size between 60 and 1,059 bp
o Length: k=7
o Reference position: the center of each peak.
o The most significant k-mer is ACAAAGG, which corresponds to the Sox2 consensus.

> > SoxevsGFP_MACS_splitted_peaks_sorted ; acaaagg distribution profile G . t d
3129 occurrences, class interval=50; chi2 = 1036.07; Eval=0; sig=75 reen: eXpeC €d occurrences

" Note: the expectation
decreases with the distance
to peak center because
peaks have variable lengths.

Blue: observed occurrences

n The k-mer ACAAGG is
concentrated the center the
400 600 ChlP-seq peak regions.

- 1000
900
800
700
600
500
400
300

class frequency

100

]
_— -600 -400

position

van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic
Acids Res 28, 1000-10. 13



Clustering k-mers by positional density profiles

GCAATE—> & \
GCAATE ™ &= \

ACGCEE—> & \

g
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i

H
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32

§
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137 |
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-87
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a7
~12
+13
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+88
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+138 |
+163 |
+188 |
4213 |

asasia cluster /3

aa
aaaaaa

ittt
L{ atatat
tatata

-637
-612
58
-562
53
=512
-487
-462
-437
-412
-387
-362
-337
-312
-287
-262
-237
=212
-187
-162
-137
=112

=37
=12
+13
+38
+63
+88
+113
38
63
88

+1
+1
+1
+213
+238
+263
+288
+313
+338
+363
+38!
+413
+438
+463
+488
+513
+538
+563
+588
+613

position relative to summit
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Motifs with position biases in Sox2 peaks from Chen, 2008

= position-analysis
o detects the Sox2 motif in Sox2 peaks (redundant motifs are found by different assemblies of oligonucleotides).
o The motifs of partner TFs (Oct4, KIf4) are not detected.

asmb (sig=75)

positions_7nt_m1 AA AA " cSF T'[
"-"AT ---- ?‘:\::: "-;'"';";' . :g::
asmb (sig=75) v
- positions_7nt_m2 | 4] CAA
positions_7nt 1’ ) ATA VA %AA " ’. _ z¢gx . Zgl )
asmb (sig=75)
positions_7nt_m3 P (: .
- T Iﬂ Tl = - A A .%AI\

Sox2 (TRANSFAC, built from individual sites)

MO01272 V$SOX2_Q6

2

@
:51

Lﬂh&gQ%T 518

mmmmmmmmmmmm

16 sites u 1 6

0
5




Motifs with position biases in Oct4 peaks from Chen, 2008

m position-analysis
o detects the hybrid Sox/Oct motif in Oct4 peaks

I ST e — T ——————

asmb (sig=75)

\TTerATCcasdT. cATII CATA$CAAT

positions_7nt_m1 .-?TT TTAT.Q@@AT ------------------
s RN R e
Postere Tt |1 aaleeCATallea AT, | 1Y e hCArALG‘:eére:

o

positions_7nt
asmb (sig sn =38.13)
AAAAAAAAAAA i"ﬂ_ﬁl I | | ITT

positions_7nt_m3

OCT (TRANSFAC, various OCT factors)

Sox2 (TRANSFAC, built from individual sites)
> MO01272 V$SOX2 _IQG MO00795 V$OCT_Q6
24 24 C
o - 31
o7 V] B = _ AlTT-
OIIIIToNQQE:T_ﬂ'E‘-ﬁEa, 051 nvmwh?mg:s
16 sites 55 sites ul7




Time efficiency

5000 = String-based approaches
o = gggg;mgggg ggg%grqgllﬁii;{n; t o The proces§ing time increases linearly with
RO et e sequence size.
: ; : reme . .
4000 o Ghipmunk i o The memory is principally affected by the
; | | number of patterns (oligo size) -> large
R SN S R R R A sequences can be treated with moderate
gl Lo RAM
8 17 R B N S = MEME
& aso0f b A o .
v j | | | § ; ; o Processing time is quadratic.
e B s = Onamedium-priced laptop (MacBook, 2Gb RAM),
500 t } the biggest files (100Mb) is treated in
1 : : : 1 1 1 : : o 3 minuteswith oligo-analysis;
o 25 minutes with dyad-analysis;
o <1 hour with position-analysis.

o 44 years with meme (polynomial
extrapolation)

sequence size (Mb)

= Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. 2012. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic

Acids Res 40(4): e31. =18



Time efficiency

Time efficiency plot : comparison .
1000(& day T Ty T Ty T Ty T Lo 2 g peal;—mo}i][s:gligg-anallysis-7nt | Strlng-baSEd approaChes
: : ' peak-motifs:dyad-analysis . . . .
[ : : : Léeci'?iv”v‘é’r‘gi‘:%’ﬁf"'°” analysis-int o Time increases linearly with
reme
chipmunk

1 & meme total sequence size.

o Memory mostly depends on
number of patterns (N~4k)
- 100Mb can be treated
with 2Gb RAM.

= EM or Gibbs samplers

o Time >quadratic.

Time (seconds)

= Onamedium-priced laptop
(MacBook, 2Gb RAM), the biggest
files (100Mb) is treated in

o 3 minutes with oligo-

analysis;
1 pee o 25 minutes with dyad-
| | | analysis;
0.1 el o <1 hour with position-
10kb 100kb 1Mb 10Mb 100Mb

analysis.
19



Time efficiency does matter

- String—based approaches Time efficiency plot : comparison

1000 ——r ———r ———r ——— motifs-oliao-analveis.
o Linear complexity : computing 1 day : : : ] g 822@8}{?2;8';%3;22%222 ?"t
. . - . . . 1 peak-motifs:position-analysis-7nt
time proportional to total 5 5 5 local-words-7nt
sequence size. - 1 & chipmunk
o Low memory usage (depends on 10000 |-
number of patterns: 4<) > 100Mb -
treated with 2Gb RAM. T
= EM or Gibbs samplers 1000
a Time >quadratic.
= On a medium-priced laptop (2010 g
MacBook, 2Gb RAM), the biggest 3 100
files (100Mb) is treated in ° -
. . . £ 1 min
o 3 minutes with oligo-analysis; =
o 25 minutes with dyad-analysis;
o <1 hour with position-analysis. 104
o 44 years with MEME
(extrapolation)
1 sec
0.1 M sl RN e
10kb 100kb 1Mb 10Mb 100Mb

20



Time complexity

oligos_7nt_mkv5 dreme local_words_7nt
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Discovered versus reference motifs

= Discovered motifs are compared to and aligned with the reference motifs.
= The program compare-motifs

o supports various scoring schemes for assessing the similarity between motifs: correlation, Euclidian, Sandelin-Wasserman,
SSD, ...

o Generates multiple (one-to-many) alignment between matrices and logos.

Onc-to-n matrix alignment; reference matrix: MA0143.1_shift3 ; 14 matrices ; sort_ficld=Icor

Matrix name Aligned logos |.\'Icor ‘ Icor |.\'cor‘ cor | cov |dEucl |NdEucI ‘NsEucl | SSD | SwW
MA0143.1_shift3 Sox2
0
a3 TT
MAO0143.1_shift3 (Sox2) .nj —c= N < I — T - e PN
- ” - " ©w ~ «© o o - o~ ” - n © ~ «© o o
5 - v v - r - v v r - Qg
669 sites
2 local_words_é6nt_mkv4_m3_shift1 local_words_é6nt_mkv4_m3
0
o " =1 i
local_words_6nt_mkvd_m3_shift1 -nj C?,\l I I I I = I — = AT 0937 |0937 |0.945 [0.945 (0087 [0.820 |0055 0961 |0.672[29328 |
(local_words_6nt_mkv4_m3) - o ~N o o g h
5 e F R 2 3

711 sites

2 oligos_7nt_mkv5_m2_shift9 oligos_7nt_mkv5_m2

o
oligos_7nt_mlv5_m2._shifty Eﬂ A I e AA I 0584 |0.778 |0.632 (0843 [0.073 | 1.100 [0.122 [0914 [1.210{16790 .
(oligos_7nt_mkv5_m2) p Lo L I R - : v e~ o o g > '

2353 sites

oligos_6nt_mkv4_m1_shift9 oligos_6nt_mkv4_m1

2
oligos_6nt_mkv4_m1_shift9 £ A I CAAA I !
o a L - 0579 |0.772 |0.630 (0.841 [0.077 | 1.178 |0.131 (0907 |1.387 |16.613 |«
(oligos_6nt_mkv4_m1) - NN ®m 2 1 ©®© N ® O O &N M T W OWN DO O h
5 - - v v = = = ¥ = = &3

1559 sites

positions_7nt_m3_shift0 positions_7nt_m3

positions_7nt_m3_shift0 j Ccc ' I I I x I 0577 [0.734 |0.613 |0.780 0078 | 1395 [0.127 [0910 |1.947 [20053 |:
o o 2 ] ('! ("_l - n © @ o '

(positions_7nt_m3)

-
1214 sites
2 oligos_7nt_mkv5_m3_rc_shift4 oligos_7nt_mkv5_m3_rc¢
oligos._7nt_mkvS,_m3_rc._shiftd 5, x 0094 [0.094 0932|0932 0095|0819 [0.074 |0947 |0.670 21330 22



Discovered versus database motifs

m Discovered motifs are compared to all the motifs stored in specialized databases.
o Public databases (accessible on the Web site) : JASPAR, PBM, RegulonDB, ...
o  TRANSFAC commercial database (requires local license).

Matrix name Aligned logos ’Nlcor’ Icor ’Ncor | cor ’ cov ’dEucl ’NdEucl ’NsEucl ‘ SSD ’ SW

positions_7nt_m2_shift3 positions_7nt_m2

2 a on B B = _ :
1] i
positions_7nt_m2_shift3 gq ATSA ACA AA =___ A a
(positions_7nt_m2) e a0 F B O O® e @ O O N ®m D O~ ® O O ;
5 - - = = = - = = = = d§ 3 H
1719 sites
MO01308_shift7 V$SOX4_01
" S i ;
0 | f ~ACAA=c :
MO1308_shift7 5 ] AA Al 0967 |0.967 |0.974 |0.974 |0.122 |0454 |0.057 |0.960 |0.206 |15.794 |<
(V$SOX4_01) 0 - &0 & B © N ® ® O = & ® F B © N © O O g
5 - - r = = - v v v = &g H
101 sites
M01247_shift0 VSNANOG_02 ;
| 1 A=AA :
=1 — .
MO1247_shiftd 831l = =R A_e:: — o892 |0892 |0907 0907 |0.067 |0999 [0.067 |0953 |0.998 |29.002 [c
(VSNANOG_02) - W m s ©w ©o N ® ® 0O - & ®m F B © N ® O © g
5 - - - - = = = - - d 3 H
500 sites
MO01016_shift7 V$SOX17_01 ;
2 i
MO01016_shift7 3 1] AC A A a
perronm i U w e o o = AR ! 6 o oo oo o 0892|0892 |0.898 |098 |0.140 |0880 0147 0896 |0.774 11226 | e
5 - - r = = - v v v = &g H
31 sites
M01590_shift4 V$SMAD1_01
| 2] A=AA :
24 _ _ o
M%IS”'MA—B‘;‘?I 5, _ o~ _ ;‘AC Aé,\ — __ 0868 |0.868 |0.887 [0.887 |0.081 |1.077 |0090 |0937 |1.161 |22.839 |¢
¥ o g~ MO YT e e nrT® e gpRIEERR 2R, s
500 sites
AMNATLN LA VOOV NN .23




Peak-motifs — web interface

e — S = Regulatory Sequence Analysis Tools (RSAT)

m Conception®, implementation' and testing': Jacques van Helden® , Morgane Thomas-Cholliert , Matthieu Defrance® , Olivier a h tt p :// rs a t = u I b L a C = b e/rs a t/

Regulatory sand', Denis Thieffry® and Carl Herrmann®t
Sequence

- = Web interface

Tools

Title  Chen p300
~ Most popular tools

e o Simplcity of use (“one click” interface).

retrieve EnsEMBL seq

oligo-analysis (words)

e ot o Advanced options can be accessed optionally.

random sequence

Or select a file to upload (.gz compressed files supported)
> view all tools

K_motifs( Browse -
U Documents /2011_pe < Browse

> Genomes and genes (T only have coordinates in a BED file, how to get sequences ?)

o Allows to analyze data set of realistic size
 v— 1 —— (uploaded files).

Build control sets

W Change motif discovery parameters

e e = Protocol (in prep)

~ NGS-ChiP-seq

s Tutorials

) Di it i -\ d- 1
peak-motifs (ChIP-seq () Discover words with local [local-wor ysis]
analysis) ™ Discover words with a positional biais [position-analysis]

» Conversion/! o Spaced words pairs
» Drawing ™ Discover over-represented spaced word pairs [dyad-analysis]

> SOAP Web services Common options for above programs
Oligomer length @6 M7 (8
Note: motifs can be larger than word sizes (words are used as seed for building matrices)

~ Docand help
Map of the tools

Background model: Markov order | oligo length -3 (intermediate size sets) -
Introduction

Tutorials 1 (more sensitive for small data sets, e.g. 100kb)
P oligo length -3 (intermediate size sets)
) Compare discovered motifs with databases_0ligo length -2 (more stringent for large data sets e.g. > 1Mb)

Contact & Forum

m ) Locate motifs and export as UCSC custom track

B Output () display @ email jvhelden@ulb.ac.be
Feedback

Jacques van Helden Note: email output is preferred for very large datasets or many comparisons with motifs collections

GO ) ( Reset DEMO ) [MANUAL] [TUTORIAL] [ASK A QUESTION]
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http://rsat.ulb.ac.be/rsat/
http://rsat.ulb.ac.be/rsat/

RSAT tools used in the peak-motifs workflow

e ) e . Sequences
( gene-info « {User-entered gene names| f Sequence retrieval [User-entered sequences | / Sequence handling
- etrieve-se
[ 1 TR ] I—’i retriev ZI > Genomic sequences | <—>[ convert-sequence |
- —t— ; ; »_retrieve- -se
(___getorthologs —|_Multi-genome gene list | [ (_elreve-ensemb-seq [ Purged sequences |« purge-sequence |
N i random-genome-fragments
random-genes |___Random gene list _| \" g . [ Random sequences |« {  random-seq )
[ Infer-operons  } > Operons ] . R
; } 1 seg-proba
f Motif discovery \ : -
— ; i otifs e
_oligo-analysis _J ; Ser-entered mofifs | / Motif utilities \
[ dyad-analysis | t| [__Oligosidyads _| »[ pattern-assembly |
[ position-analysis | ! | [Assembled oligos/dyads J+ !
N X
Background models [ local-word-analysis | i (" random-motifs |
[__User-entered bg models | [ footprint-discovery | i ,
[ Bernoulli models | ( oligo-diff ) oo Matrices f » convert-matrix ]J
[ Markov models | —— i »  permute-matrix
Q info-gibbs y | !
| S : » matrix-distrib ]—-
( convert-background-model | - —— Control sites \
Pattern matching (Tandomsites ) » matrix-quality  —H
Features ( dna-pattern J ¥ »compare-matrices |
. _ » =
[ e [User-entered features | 4__’ ( matrix-scan ) I Rencom Sies | j
convert-features |« | Predicted sites | \[ matrix-scan-quick ]/ ( implar:t-sites )
| Predicted CRERs | |
| .
Legend v : Statistics
g. | [ [ feature-map | Drawing ( XYgraph P—]——| Score distributions |
L__User input |_Sequence probabilities }
( Program J . Figures !l
| Result | |__Feature map drawing | | XY plot |
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Measuring peak enrichment in binding sites for a
transcription factor of interest

Tool : matrix-quality




Building fake peak sets
for negative controls

Tools:
random-seq
random-genome-fragments
random-peaks




= DEMO



Using motifs to evaluate peak quality
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Actual binding site

The difficulty of peak identification (peak calling) o ——

NNV

Sequenced  Ram

Sense tags M/VV\ Anti-sense tags

" A ChlIP-seq experiment typically returns several millions of
sequences (“reads”) of short size (25bp to 100bp, depending
on the sequencer characteristics).

ChIP-Seq DNA Fragments
A

" The reads correspond to the extremities of the DNA

fragments. L
® . ERTANTS Wy
o Reads are distribued on both strands g{ it ol s
o The peaks on the forward and reverse strand are § (| Reforence genome
+ve to -ve transition point (8,
spaced by the average length of the fragment. " /a'canmd'a«em'namﬁ”sn'e"
E R
o Most of the reads to not even cover the actual 8 Pl
binding sites. 5
= Peak calling programs apply various strategies to identify W S

# anti-sense tags in window i

and score the peaks from a set of reads, but identifying
regions covered by more reads than expected by chance
(see Pepke et al., 2009 for a review).

Figure from Jothi et al. (2008)
a Figure 1 from Pepke et al (2009).

wm CTCF motif

Watson (+) reads s
minus Crick (-) 0 . ‘A

n Figure reads (RPM) 1 *v""
-5.3766 _|
o RMP: read per millions. s
Total reads
(RPM) h
0.0586 _ - ;
b Position (bp) (i |

= Pepke et al. Computation for ChIP-seq and RNA-seq studies. Nat Methods (2009) vol. 6 (11 Suppl) pp. S22-32.
= Jothi et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res (2008) vol. 36 (16) pp. 5221-31



Question

= Which peak-caller should be used ? MACS [
o MACS, SWEMBL, SICER, ... £ S'SSRS# B
. . . < spp mtc= ERRERERER
o For a comparative evaluation of peak-calling 5  sppwid :
. . . o h
programs, see Wilbanks & Facciotti (2010). &  QuEsTl ‘ [
= Should we refine regions into actual peaks ? ir_:” Hpeak=r—_ B
o PeakSplitter §  PeakSeqmmms
_ < ERANGE | GABP
=  How many peaks are relevant (at least, for motif o MCPE] u FoxA1
analysis)? Sole-Search] « NRSF
o The stringency of a peak caller software CusGenomeh
strongly depends on its tuning. Core peaks |
0 5 10 15 20

®* MACS: P-value threshold (option —p,

Number of Peaks (thousands)

from 0 to 1)
. Figure 3. Quantity of peaks identified. Programs report different
[ .

SWEMBL: relative baCkg rou nd, also numbers of peaks, when run with their default or recommended
“ . ” . settings on the same dataset. Number of reported peaks is shown for
Ca”ed grad|ent (0pt|0n _R, from O to the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets.
To assess how different these peak lists were, those peaks identified by

1) all 11 methods were calculated (core peaks).

doi:10.1371/journal.pone.0011471.g003

Source: Wilbanks and Facciotti (2010).

= Wilbanks EG, Facciotti MT. 2010. Evaluation of algorithm performance in ChlP-seq peak detection. Plos One 5(7): e11471.

= Pepke S, Wold B, Mortazavi A. 2009. Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11 Suppl): S22-32.
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rive-verieorate uvnir-seq neveais
the Evolutionary Dynamics of
Transcription Factor Binding

H g 'F HNF4A H ot w

Clam Mmus  Hsap Cfam Mmus  Hsap
Dominic Schmidt,*#* Michael D. Wilson,“2* Benoit Ballester,** Petra C. Schwalie,? Paa's N t~ AN
Gordon D. Brozm,1 Aileen .Ma'rs!\a}l,"‘ Claudia ;(;mer,1 Stephen Watt,: Celia P. Martinez-Jimenez,® e a A " 'um‘m) [ :’5 a ool '
Sarah Mackay,® lannis Talianidis,® Paul Flicek,>’+ Duncan T. Odom™%t ww e Tore 1727 192z Mme oaio 13007 N

dA N G . Benoit

Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore o s e o a2k Ballester
the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput = 4 P~ e = (Ex-EBI; Now at
sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, v . TAéC)
CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five 2 g
vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding . (15258 o

Placental D loss

is species-specific, and aligned binding events present in all five species are rare. Regions

— P
near genes with expression levels that are dependent.on a.ﬂ=.are qften bound by the TF il:l multiple Heep @ < Hp @ 000
species yet show no enhanced DNA sequence constraint. Binding divergence between species can be o Mmus @ i hémus o 000
lgrgely explained by sequence changes to thg b(_:und motifs: Afnong t.he binding events lost in one bl Mﬁ;z:,: e ® o = g ;gg
lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large Ggad @ OO0 OOO0000 @ N
o © - oo o~ @ Bound
interspecies differences in transcriptional regulation and provide insight into regulatory evolution. ® RIS BPREHER © ONotbound
CEBPA ChiP-seq of animal livers
§ % ﬂ' A HNF4A
d)
g.s 8 Hsap i A Motif occurrence in: Motif occurrence in:
g | Extract in vivo motif Al Shared Al Shared
° o J from ChIP data peaks peaks peaks peaks
2 Mmus L 'ﬂ' ) :
| (P il - @@ ol @@
g o) e | .
Cfam — ! A S Mmus T—T—> ] TTC*-AA ad ‘ ‘ »I“CT*T°" ‘ '
o o i .
Mdom Himbimed - @@ ol .~
, Ca ]
Goal I\ l A Mdom > J"TTC‘AA -’ 0 ‘
10 kb PCK1 et llm v ‘i ‘
Consenvation 1T | T W] e o i @ @
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Mammal Cons

H
orang

Horse

B e e o

-3.3

Fat I |

Zcale S kb} { mm9
chr3: 13794 0000| 137945000|
' LR . ' " " LLAL I L L) - . Iaat?l_m"“‘S_CEBP " . L -, e LA R
. ' - - . i . L) . . ' - LI i
. . . "n . . . 1
- - l: .
il
i
-
il
i
i
i
{
H
results /peaks /SHEMBL /SHEMBL _mmus_CEBPA_vs_mmus_Input_peaks_Re,81_nof . fasta
mme_chir3 137939217 _137939566_+
mm3_chr3_137940399_137940765_+ R Peaks returned by SWEMBL
mnS_chr3_137941874_137941321_+
REAT peak-motifs mmus_CEBPA_vS_mmus_Input_macsi4_pvalie-7_summits (R=001)
38157_137938358_+ 3
39272_137939473_+
40445_137940646_+ ] Peaks returned by MACS
41113_137941314_+ B _ i
| |33105- 1379430894 (pval 1e-7, 200bp around summits)
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics
Adhl s e &+ et -
RefSeq Genes
RefSey Genes o | | 1.
Mouse ESTs That Have Been Spliced
Spliced ESTs . - .-
2.1

Flacental Mammal Basewise Conservation by FhuloF
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How many peaks?

u A non-trivial problem for the analysis of ChIP-seq data is to
define the genomic regions enriched in short reads.

u The number of peaks strongly depends on the choice of the
peak-calling program and on the parameters.

n Example: identifying HFN4 binding peaks in the dataset from
Schmidt et al. (2010).

o 34M reads, against 12M reads for the “input”
o SWEMBL identifies 720 peaks when R=0.1, >160,000
peaks when R=0.001.
o MACS identifies 52,785 peaks
(parameters: mfold=10,30, pval=1e-5)
n We are getting familiar with ChIP-seq reports enumerating
thousands — or tens of thousands — peaks.
o Does it correspond to our expectation about the
number of binding locations for a specific TF ?
o How should we integrate his information in our
regulatory models?

= ChIP-seq reads provided by Benoit Ballester
= Data source: Schmidt et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription
factor binding. Science (2010) vol. 328 (5981) pp. 1036-40

= Tool for peak detection: SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL/), developed by Stephan
Wilder.

) 140000

Number of peak

20000 (-

Peak calling with SWEMBL
Dataset: HNF4A from Schmidt et
al. (2010)

100000

80000 [

60000 |-

40000 |-

SWEMBL parameter R

HNF4A peaks (SWEMBL)

R # peaks Size (Mb)
0.1 720 0.2
0.05 3,346 0.9
0.02 11,901 3.5
0.01 20,356 5.8
0.005 34,569 9.5
0.002 67,403 15.5
0.001 161,341 25.2
CEBPA peaks (SWEMBL)

R # peaks Size (Mb)
0.1 1,271 0.4
0.05 5,942 1.7
0.02 16,999 5.3
0.01 28,668 8.5
0.005 48,442 134
0.002 104,052 22.1
0.001 185,885 29.2
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http://www.ebi.ac.uk/~swilder/SWEMBL/

Peak annotation

u Context: we saw that there are many peak callers, and that the number of peaks varies depending on some parametric choices.
How to evaluate the choices ?

u Significance
o Compare discovered motif significance in actual peak with random genomic regions of the same sizes.
n Consistency
o Compare peak sets returned by different peak callers
= Motif analysis
o Compare the enrichment of the different peak sets for the reference motif
o If not reference motif: compare relative enrichment for discovered motifs
n Peak annotation
o Check the fraction of peaks in genomic regions compatible with regulation (promoters, introns)
o Eukaryotes: compare peak sets with histone marks associated with enhancers
o Phylogenetic conservation of predicted binding sites
. Validation
o If areference collection of sites is available, evaluate the overlap
o Note: we can only evaluate the sensitivity, not the specificity since all site databases are incomplete.
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Peak enrichment for the reference motif (matrix-quality)

= Empirical distribution of matrix scores indicate the relative enrichment of peak sequences for the reference
motif.

= Basically, the enrichment decreases when we collect more peaks (specificity decrease).
= However, we also collect more bona fide sites (sensitivity increase). ©

Y_HNF4_DR1_0Q3

107 ] ——— # theor

# matrix_sites_cv_loo
R # matrix_sites

1071 # SWEMBL_RO.1
# SWEMBL_R0.02
# SWEMBL_R0.05

10"-2 # SWEMBL_RO.01
# SWEMBL_RO.005
# SWEMBL_R0.002

10°-3 # SWEMBL_RO.001

SWEMBL _R0O .001_10perm

z

e

o

2

io~-5

=]

(=]

-

10°6 5 M00764 V_HNF4_DR1_Q3

o |2 A _ A
o i T ‘ A CTTT Cé
10°-8 T h s v B Ne o b - N
5 - - - -3
13 sites
10"-9
=35 =30 =25 -20 -15 =10 -5 0 5 10 15

matrix score

= Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011).
Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.

= Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-

vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040. =36



Peak enrichment for the reference motif (matrix-quality)

= Relative enrichment of peak collections for the reference motif
o Data: With CEBPA reads from Schmidt, Wilson & Ballester
o SWEMBL returns stronger enrichment than MACS.

1071

N V_CEBPA_O1

1070 T T T theor

T matrix_sites_cv_loo
matrix_sites
SWEMBL_RO.1
SWEMBL_R0 .02
SWEMBL_R0 .05
SWEMBL_RO .01

SWEMBL _R0.005
SWEMBL _R0.002
SWEMBL_RO.001
SWEMBL _R0.001_10perm rm

10"-1

10"-2

L I R I

10"-3

#E0F (1 scal)
w1

>
|
=)

M00116 V_CEBPA_01

I
q
0N
ol
P
>

10"-8
o4 =
1079 5 - W T 0w © ~
43 sites
10"-10
20 -15 -10 -5 0 5 10 15

matrix score

= Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011).
Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.

= Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-
vertebrate ChlIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040. a37



What did we learn so far ?

m  Peak calling is not trivial

a

a

a

Peak numbers are strongly affected by the algorithm (MACS, SWEMBL, ...) and parametric choices.
Sensitivity/specificity trade-off

®* The more peaks, the more sites.

® But: enrichment progressively fades out.
All algorithms are not alike

® With our test case, SWEMBL returns better peaks than MACS (higher enrichment for the reference
motif).

= Epistemological question

a

High-throughput mind now considers normal for a TF to bind thousands, or even tens or thousands places
in the genome.

Transcription factors may indeed spend their time to flirt with DNA, rather than bind for life to the same
location.

However, this raises a new question: how can TFs ensure their function this way?
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Evaluating the quality of peak collections




Slicing the peak collection

= Recipe

Slice 1 (topee——s

o Sort peaks by decreasing score

o Select

* ntop peaks (“top slice”)

* n bottom peaks (“bottom slice”) Slice 2

* afew intermediate slices of n peaks

o Analyse enrichment for a reference motif
(annotated or discovered from the data) in
the successive slices. Slice 3

Slice 4

(L L A

Slice 5 (bottomlrE—==—




GATA3 — reasonably good peak collection

0T

o V_GATA3_02
# theor

sample: GSM774297  slice1_1-1000
# slice2_1427-2426
. # slice3_2854-3853

107-1 # sliced_4281-5280
# slice5_5707-6706
# all_peaks
# all_peaks_Sperm

10"-2

T

B3

“

o

]

g

[}

-

MO00350 V_GATA3_02
2 =
10"-5 "
= =A an_A
o~ - N ™ n ©o© ~ o
10™-6 5 < @ S
41 sites
10°-7
=25 =20 -15 =10 -5 0 5 10 15
matrix score




GATA3 — poor quality peak collection

m  The top slice shows some enrichment
m The other slices are no more enriched than the theoretical (random) expectation
= Negative control: scanning sequences with permuted matrices fits the theoretical expectation.

1071

10"0

';}dCDF (IQ? scaleg)
!
A

10°-7

10"-8

Y_GATA3_02

sample: GSM523222

MO00350 V_GATA3_02
=

41 sites

-25

matrix score

# theor

# slicel_1-1000

# slice2_5572-6571
# slice3_11143-12142
# sliced_16715-17714
# slice5_22286-23285
# all_peaks

# all_peaks_Sperm
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