
Analyzing ChIP-seq (and related) 
peaks with RSAT



RSAT peak-motifs :
discovering motifs in full-size peak sets



An integrated workflow for analyzing ChIP-seq peaks
n The program peak-motifs is a work flow combining a series of RSAT tools 

optimized for discovered motifs in large sequence sets (tens of Mb) 
resulting from ChIP-seq experiments.. 

n Multiple pattern discovery algorithms
q Global over-representation
q Positional biases
q Local over-representation

n Discovered motifs are compared with 
q motif databases 
q user-specified reference motifs.

n Prediction of binding sites, which can be uploaded as custom annotation 
tracks to genome browsers (e.g. UCSC) for visualization. 

n Interfaces
q Stand-alone
q Web interface
q Web services (SOAP/WSDL)
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Composition analysis
n Analysis of the input sequence composition

q Nucleotide composition + positional distribution
q Dinucleotide composition reveals dependencies such as CpG islands
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Composition analysis results
n The composition analysis reveals differences between data sets.

q Sox2 and Ctcf peaks: clear avoidance of CpG dinucleotides.
q n-Myc peaks appear as CpG island (the avoidance of CpG is relaxed).
q The center of Ctcf peaks shows a strong depletion in AA, TT, AT and TA.
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User-specified reference motifs (the “expected” answer)
n One or several reference motifs can be defined.
n Reference motifs are the ones which are expected to be found in the dataset.

q More precisely, if those motifs are not reported, it is considered as a failure.
n Choice of reference motifs is somewhat tricky.

q Example: Sox2 peaks
• 2 slightly different matrices are annotated in TRANSFAC for Sox2
• The 3rd matrix reflects the composite Sox/Oct motif (SOCT).
• This motif was obtained by the TRANSFAC team using a motif discovery algorithm on Chen data set -> not properly speaking a 

“golden reference” for evaluating motif discovery accuracy.
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Detection of global over- or under-representation
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Primary result: a list of over-represented words
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Over-represented words reveal motif variability
n The list of over-represented words 

generally contain groups of mutually 
overlapping words.

n Those groups can be aligned using the 
program pattern-assembly

n Assembled words reveal
q larger motifs than the initial word 

length
q positions with variable residues

n Word assemblies can be used to build a 
matrix.
q Assembled words are used as seed to 

scan input sequences for sites.
q A new matrix is build from the 

collected sites.
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Collecting a matrix from assembled words
n The significance matrix can be used as “seed” to scan the input sequences and collect binding sites. 
n Those sites are in turn used to build a final matrix. 
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Motifs reported with oligo-analysis (Sox2 peaks from Chen, 2008)
n oligo-analysis detects over-represented k-mers, as compared to some background model.
n For length k, we use the most stringent Markov chain model (m = k – 2).
n The program detects the Sox2 and Oct4 motifs.
n It also returns a Klf-like motif

n11
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Detecting heterogeneous repartition along sequences
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Detecting k-mers with biased positional distribution
n position-analysis (van Helden et al., 2000) detects k-mers having a heterogeneous distribution of occurrences across input sequences.
n Principle: for each k-mer

q Compute the number of occurrences in non-overlapping windows starting from a reference point (sequence start, center or end).
q Compute the expected occurrences in each window according to a homogeneous distribution model.
q Compute the difference between the observed and expected positional distribution (chi2 test for goodness of fit).

n Example: Sox2 peaks from Chen, 2008
q 10,929 peaks of size between 60 and 1,059 bp
q Length : k=7
q Reference position: the center of each peak.
q The most significant k-mer is ACAAAGG, which corresponds to the Sox2 consensus.
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van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic 
Acids Res 28, 1000-10.



Clustering k-mers by positional density profiles
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Position profile clustering
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Motifs with position biases in Sox2 peaks from Chen, 2008
n position-analysis

q detects the Sox2 motif in Sox2 peaks (redundant motifs are found by different assemblies of oligonucleotides).
q The motifs of partner TFs (Oct4, Klf4) are not detected.
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Motifs with position biases in Oct4 peaks from Chen, 2008
n position-analysis

q detects the hybrid Sox/Oct motif in Oct4 peaks
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Time efficiency
n String-based approaches

q The processing time increases linearly with 
sequence size. 

q The memory is principally affected by the 
number of patterns (oligo size) -> large 
sequences can be treated with moderate 
RAM.

n MEME
q Processing time is quadratic.

n On a medium-priced laptop (MacBook, 2Gb RAM), 
the biggest files (100Mb) is treated in

q 3 minuteswith oligo-analysis;
q 25 minutes with dyad-analysis;
q <1 hour with position-analysis.
q 44 years with meme (polynomial 

extrapolation)

n Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. 2012. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic 
Acids Res 40(4): e31.
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Time efficiency

n String-based approaches
q Time increases linearly with 

total sequence size. 
q Memory mostly depends on 

number of patterns (N~4k) 
à 100Mb can be treated 
with 2Gb RAM.

n EM or Gibbs samplers
q Time >quadratic.

n On a medium-priced laptop 
(MacBook, 2Gb RAM), the biggest 
files (100Mb) is treated in

q 3 minutes with oligo-
analysis;

q 25 minutes with dyad-
analysis;

q <1 hour with position-
analysis.
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Time efficiency does matter
n String-based approaches

q Linear complexity : computing 
time proportional to total 
sequence size. 

q Low memory  usage (depends on 
number of patterns: 4k) à 100Mb 
treated with 2Gb RAM.

n EM or Gibbs samplers
q Time >quadratic.

n On a medium-priced laptop (2010 
MacBook, 2Gb RAM), the biggest 
files (100Mb) is treated in
q 3 minutes with oligo-analysis;
q 25 minutes with dyad-analysis;
q <1 hour with position-analysis.
q 44 years with MEME 

(extrapolation)
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Time complexity



Discovered versus reference motifs
n Discovered motifs are compared to and aligned with the reference motifs.
n The program compare-motifs 

q supports various scoring schemes for assessing the similarity between motifs: correlation, Euclidian, Sandelin-Wasserman, 
SSD, ...

q Generates multiple (one-to-many) alignment between matrices and logos.
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Discovered versus database motifs
n Discovered motifs are compared to all the motifs stored in specialized databases.

q Public databases (accessible on the Web site) : JASPAR, PBM, RegulonDB, ...
q TRANSFAC commercial database (requires local license).

n23



Peak-motifs – web interface
n Regulatory Sequence Analysis Tools (RSAT)

q http://rsat.ulb.ac.be/rsat/
n Web interface 

q Simplcity of use (“one click” interface).
q Advanced options can be accessed optionally.
q Allows to analyze data set of realistic size 

(uploaded files).
n Tutorials
n Protocol (in prep)

n24
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RSAT tools used in the peak-motifs workflow
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Measuring peak enrichment in binding sites for a 
transcription factor of interest

Tool : matrix-quality



Building fake peak sets 
for negative controls

Tools:
random-seq

random-genome-fragments
random-peaks



Random-seq

n DEMO



Using motifs to evaluate peak quality
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The difficulty of peak identification (peak calling)
n A ChIP-seq experiment typically returns several millions of 

sequences (“reads”) of short size (25bp to 100bp, depending 
on the sequencer characteristics).

n The reads correspond to the extremities of the DNA 
fragments. 

q Reads are distribued on both strands
q The peaks on the forward and reverse strand are 

spaced by the average length of the fragment.
q Most of the reads to not even cover the actual 

binding sites.
n Peak calling programs apply various strategies to identify 

and score the peaks from a set of reads, but identifying 
regions covered by more reads than expected by chance
(see Pepke et al., 2009 for a review).

n Figure
q RMP: read per millions.

n Pepke et al. Computation for ChIP-seq and RNA-seq studies. Nat Methods (2009) vol. 6 (11 Suppl) pp. S22-32.
n Jothi et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res (2008) vol. 36 (16) pp. 5221-31

Figure 1 from Pepke et al (2009).
Figure from Jothi et al. (2008) 



Question
n Which peak-caller should be used ?

q MACS, SWEMBL, SICER, …
q For a comparative evaluation of peak-calling 

programs, see Wilbanks & Facciotti (2010).
n Should we refine regions into actual peaks ?

q PeakSplitter
n How many peaks are relevant (at least, for motif 

analysis)?
q The stringency of a peak caller software 

strongly depends on its tuning.
• MACS: P-value threshold (option –p, 

from 0 to 1)
• SWEMBL: relative background, also 

called “gradient” (option –R, from 0 to 
1)

n Wilbanks EG, Facciotti MT. 2010. Evaluation of algorithm performance in ChIP-seq peak detection. Plos One 5(7): e11471.
n Pepke S, Wold B, Mortazavi A. 2009. Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11 Suppl): S22-32.

n31
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Site turn-over
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How many peaks?
n A non-trivial problem for the analysis of ChIP-seq data is to 

define the genomic regions enriched in short reads. 
n The number of peaks strongly depends on the choice of the 

peak-calling program and on the parameters. 
n Example: identifying HFN4 binding peaks in the dataset from 

Schmidt et al. (2010).
q 34M reads, against 12M reads for the “input”
q SWEMBL identifies 720 peaks when R=0.1, >160,000 

peaks when R=0.001.
q MACS identifies 52,785 peaks 

(parameters: mfold=10,30, pval=1e-5)
n We are getting familiar with ChIP-seq reports enumerating 

thousands — or tens of thousands — peaks. 
q Does it correspond to our expectation about the 

number of binding locations for a specific TF ?
q How should we integrate his information in our 

regulatory models?

n ChIP-seq reads provided by Benoît Ballester
n Data source: Schmidt et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription 

factor binding. Science (2010) vol. 328 (5981) pp. 1036-40
n Tool for peak detection: SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL/), developed by Stephan 

Wilder.
n34
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Peak annotation
n Context: we saw that there are many peak callers, and that the number of peaks varies depending on some parametric choices. 

How to evaluate the choices ?
n Significance

q Compare discovered motif significance in actual peak with random genomic regions of the same sizes.
n Consistency

q Compare peak sets returned by different peak callers
n Motif analysis

q Compare the enrichment of the different peak sets for the reference motif
q If not reference motif: compare relative enrichment for discovered motifs

n Peak annotation
q Check the fraction of peaks in genomic regions compatible with regulation (promoters, introns)
q Eukaryotes: compare peak sets with histone marks associated with enhancers
q Phylogenetic conservation of predicted binding sites

n Validation
q If a reference collection of sites is available, evaluate the overlap
q Note: we can only evaluate the sensitivity, not the specificity since all site databases are incomplete.

n35



Peak enrichment for the reference motif (matrix-quality)
n Empirical distribution of matrix scores indicate the relative enrichment of peak sequences for the reference 

motif.
n Basically, the enrichment decreases when we collect more peaks (specificity decrease).
n However, we also collect more bona fide sites (sensitivity increase). K

n Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011). 
Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.

n Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-
vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040. n36



Peak enrichment for the reference motif (matrix-quality)
n Relative enrichment of peak collections for the reference motif

q Data: With CEBPA reads from Schmidt, Wilson & Ballester
q SWEMBL returns stronger enrichment than MACS.

n Tool : matrix-quality, Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J. & van Helden, J. (2011). 
Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39, 808-24.

n Data source: Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S et al. 2010. Five-
vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981): 1036-1040. n37



What did we learn so far ?
n Peak calling is not trivial

q Peak numbers are strongly affected by the algorithm (MACS, SWEMBL, …) and parametric choices.
q Sensitivity/specificity trade-off

• The more peaks, the more sites.
• But: enrichment progressively fades out.

q All algorithms are not alike
• With our test case, SWEMBL returns better peaks than MACS (higher enrichment for the reference 

motif).

n Epistemological question
q High-throughput mind now considers normal for a TF to bind thousands, or even tens or thousands places 

in the genome.
q Transcription factors may indeed spend their time to flirt with DNA, rather than bind for life to the same 

location.
q However, this raises a new question: how can TFs ensure their function this way?
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Evaluating the quality of peak collections



Slicing the peak collection
n Recipe

q Sort peaks by decreasing score
q Select 

• n top peaks (“top slice”)
• n bottom peaks (“bottom slice”)
• a few intermediate slices of n peaks

q Analyse enrichment for a reference motif 
(annotated or discovered from the data) in 
the successive slices.

Slice 1 (top)

Slice 5 (bottom)

Slice 2

Slice 3

Slice 4



GATA3 – reasonably good peak collection

sample: GSM774297



GATA3 – poor quality peak collection
n The top slice shows some enrichment
n The other slices are no more enriched than the theoretical (random) expectation
n Negative control: scanning sequences with permuted matrices fits the theoretical expectation. 

sample: GSM523222


