
Motif discovery
String-based approaches

Regulatory Sequence Analysis

1

Jacques van Helden
https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France
Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB)
http://www.france-bioinformatique.fr

https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
https://orcid.org/0000-0002-8799-8584
http://www.france-bioinformatique.fr/
http://www.france-bioinformatique.fr/
http://www.france-bioinformatique.fr/


MCM

CLB2

SIC1
MAT

CLN2

Y'

MET

Alpha cdc15 cdc28 Elu

Spellman et al. (1998). Mol Biol Cell 9(12), 3273-97.

Motif discovery in promoters of co-expressed genes

n van Helden, J., Andre, B. and Collado-Vides, J. (1998). Extracting regulatory sites from the upstream region of yeast 
genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281, 827-42.

n van Helden, J., Andre, B. and Collado-Vides, J. (2000). A web site for the computational analysis of yeast regulatory 
sequences. Yeast 16, 177-87.

n van Helden, J., Rios, A. F. and Collado-Vides, J. (2000). Discovering regulatory elements in non-coding sequences 
by analysis of spaced dyads. Nucleic Acids Res 28, 1808-18. 2
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1. Count k-mer occurrences2. Over-representation statistics

3. Motif assembly

4. Extract matrix from motifs in sequence



Detection of over-represented motifs
n Knowing that a set of genes are co-regulated, one can expect that their upstream regions contains some 

regulatory signal. 
n This signal is likely to be more frequent in the upstream regions of the co-regulated genes than in a random 

selection of genes.
n To discover signals responsible for the co-regulation of a group of genes, we can detect over-represented motifs 

in their upstream sequences.
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Evaluation with known regulons
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Testing the performances with known regulons
n NIT 

q 7 genes expressed under low nitrogen conditions
q DAL5, DAL80, GAP1, MEP1, MEP2, MEP3, PUT4

n MET
q 10 genes expressed in absence of methionine
q MET3, MET25, MET2, MET19, MET14, MET6, SAM1 SAM2, MET1, MET30, MUP3

n PHO
q 5 genes expressed under phosphate stress
q PHO5, PHO11, PHO8, PHO84, PHO81

n GAL
q 6 genes expressed in presence of galactose
q GAL1, GAL2, GAL7, GAL80, MEL1, GCY1 

n ...
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Interface between the yeast Pho4p protein and one of its binding sites
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Background model
n To detect over-represented motifs, the observed occurrences are compared to the random expectation.
n The random expectation can be estimated according to different models

q Bernoulli model, with a specific probability for each nucleotide.
• over-simplistic to reflect biological sequence properties

q Markov model, estimated from the input sequence itself
• the order of the Markov model is restricted by the input sequence size (needs to be sufficient to 

obtain a reliable estimate of 3m parameters)
q External background: occurrences for the same motif in a reference data set

• whole genome
n Problematic :mixture of sequence types with very different properties

• intergenic sequences
n Include upstream and downstream sequences + “gene deserts” + heterochromatin

• set of all upstream sequences for the organism considered
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PHO
aaaaaa|tttttt   51
aaaaag|cttttt   15
aagaaa|tttctt   14
gaaaaa|tttttc   13
tgccaa|ttggca   12
aaaaat|attttt   12
aaatta|taattt   12
agaaaa|ttttct   11
caagaa|ttcttg   11
aaacgt|acgttt   11
aaagaa|ttcttt   11
acgtgc|gcacgt   10
aataat|attatt   10

MET
aaaaaa|tttttt   105
atatat|atatat   41
gaaaaa|tttttc   40
tatata|tatata   40
aaaaat|attttt   35
aagaaa|tttctt   29
agaaaa|ttttct   28
aaaata|tatttt   26
aaaaag|cttttt   25
agaaat|atttct   24
aaataa|ttattt   22
taaaaa|ttttta   21
tgaaaa|ttttca   21

NIT
aaaaaa|tttttt   80
cttatc|gataag   26
tatata|tatata   22
ataaga|tcttat   20
aagaaa|tttctt   20
gaaaaa|tttttc   19
atatat|atatat   19
agataa|ttatct   17
agaaaa|ttttct   17
aaagaa|ttcttt   16
aaaaca|tgtttt   16
aaaaag|cttttt   15
agaaga|tcttct   14

GAL
aaaaaa|tttttt   47
aaaaat|attttt   17
aatata|tatatt   17
aaaatt|aatttt   16
aaaata|tatttt   15
attttc|gaaaat   13
aaataa|ttattt   13
aaatat|atattt   13
ataaaa|ttttat   12
atatta|taatat   12
atatat|atatat   11
tgaaaa|ttttca   11
caaaaa|tttttg   11

The most frequent oligonucleotides are not informative
n A (too) simple approach would consist in detecting the most frequent oligonucleotides (e.g. hexanucleotides) for 

each group of upstream sequences.
n This would however lead to deceiving results.

q In all the sequence sets, the same kind of motifs are selected: AT-rich hexanucleotides.
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A more relevant criterion for over-representation
n The most frequent motifs do not reveal the motifs specifically bound by specific transcription factors. 
n They merely reflect the compositional biases of upstream sequences.
n A more relevant criterion for over-representation is to detect motifs which are more frequent in the upstream 

sequences of the selected genes (co-regulated) than the random expectation.
n The random expectation is calculated by counting the frequency of each motif in the complete set of upstream 

sequences (all genes of the genome).
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Estimation of word-specific expected frequencies with a Markov model
n In a Markov model, the probability to find a letter at position i 

depends on the residues found at the m preceding residues. 
n The tables represent the transition matrices for Markov chain 

models of order 1 (top) and 2 (bottom). 
n Expected frequencies can be estimated

q On the basis of a set of background sequences (e.g. the 
whole set of upstream sequences of the considered 
organism).

q On the basis of the input sequence set itself: the 
probability of larger words is estimated from the observed 
frequencies of the sub-words that compose them. 
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Estimation of word-specific expected frequencies from a set of background sequences

n Hexanucleotide frequencies of have been measured in the 
whole set of 6000 yeast upstream sequences.

n Some words are very frequent, others are rare. 
q range 4.5e-5 to 1.2e-2

q Ratio between the most frequent and less frequent 
hexanucleotide: 
• max(f)/min(f)=268
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Hexanucleotide frequencies 
in yeast upstream sequences

Example: 
6nt frequencies in the whole set of yeast upstream sequences
Words are grouped by pairs of reverse complements.



6nt frequencies differ between coding and non-coding sequences
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Inter-species variations in intergenic 6nt frequencies
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Hexanucleotide occurrences in upstream sequences of NIT genes
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Hexanucleotide occurrences in upstream sequences of MET genes
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Hexanucleotide occurrences in upstream sequences of PHO genes
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Hexanucleotide occurrences in upstream sequences of GAL genes
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Hexanucleotide occurrences in upstream 
sequences of yeast  regulons
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Hexanucleotide occurrences in an extended NIT regulon
n We analyzed here an extended set of 41 NIT genes (taken from Godard et al., 2006).
n The number of genes affects the dispersion around the diagonal on the plot of observed versus expected occurrences.
n The signal-to-noise separation increases when more genes are analyzed.
n The logarithmic axes better emphasize the words with low expected and observed occurrences but does not allow to 

display words with 0 occurrences.
n Words with very low expected frequencies are sensitive to low-number fluctuations. For such cases, the 

observed/expected ratio is misleading  (e.g. exp=1, obs=4). 
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Scoring statistics
n Several scoring statistics have been used to assess the statistical significance of word over-representation
n Observed/expected ratio

q Never use this statistics ! 
q The ratio can be misleading, because it over-emphasizes the motifs with a very low number of expected 

number of occurrences
q Example: 

• xobs/xexp = 10/1 is quite significant, but xobs/xexp =1/0.1 is not. 

n Log-likelihood ratio
q LLR=Fobs*log(Fobs/Fexp)

n Z-score (Matthieu Blanchette)
q Z-score = (xobs-xexp)/sX
q Only valid for very large sequences (exp >> 10 for each word)

n Poisson (Andreas Wagner)
n Compound Poisson (Sophie Schbath)
n Binomial (Jacques van Helden)
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Scoring statistics - Binomial
n Advantages

q Allows to estimate a P-value.
q Appropriate for small sequence sets, where some words have a very low expected number of occurrences (<1).
q Allows to detect over- and under-representation. 

n Weaknesses
q Bias for self-overlapping words (but this can be circumvented by preventing the counting of overlapping 

occurrences).
q Assumes that sequence length is much larger than word length

21

n Probability to observe exactly x occurrences

n Probability to observe at least s occurrences

Where
x = observed occurrences
T = Sumi=1->n(Li-k+1) = number of 

possible positions for a word of 
length k in a sequence of n 
sequences of length Li

p = word probability



Genes DAL5, DAL80, GAP1, MEP1, MEP2, MEP3, PUT4
Known motif GATAAg
Factors Gln3p; Nil1p; Gzf3p; Uga43p

Hexanucleotide analysis in sequences upstream of the NIT regulon

n22n van Helden,J., André,B. and Collado-Vides,J. (1998) J Mol Biol, 281, 827–842.



Feature-map of discovered motifs - NIT regulon
n Typical features of yeast GATA-boxes

q Multiple occurrences per sequences.
q Occurrences generally appear clustered (at least two with a spacing of 0-60bp). 
q This probably stimulates synergic effects. 

n Remark: PUT4 promoter does not contain a single instance of the significant hexanucleotides
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Genes PHO5, PHO8, PHO11, PHO84, PHO81
Known motifs CACGTGGG CACGTTTT
Factors Pho4p (high affinity) Pho4p (medium affinity)

Hexanucleotide analysis of the PHO regulon

van Helden,J., André,B. and Collado-Vides,J. (1998) J Mol Biol, 281, 827–842. 24



Feature-map of over-represented k-mers – PHO regulon
n The feature map provides a convenient representation of the location of over-represented k-mers

q Each colour represents one over-represented k-mer
q Box height = k-mer significance
q Clusters of mutually overlapping words suggest the presence of TFBS wider than 6 bp. 

n Green rectangles indicate the positions of experimentally proven sites
q For PHO11, no site is documented, we can thus not check the predictions. 
q For the other genes, the proven sites are detected as clusters of overlapping words

n van Helden,J., André,B. and Collado-Vides,J. (1998) J Mol Biol, 281, 827–842. 25
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Feature-map of over-represented k-mers - PHO regulon
n The feature map provides a convenient representation of the location of over-represented k-mers

q Each colour represents one over-represented k-mer
q Box height = k-mer significance.
q Clusters of mutually overlapping words suggest the presence of TFBS wider than 6 bp. 

n Green rectangles indicate the positions of experimentally proven sites
q For PHO11, no site is documented, we can thus not check the putative binding sites
q For the other genes, the proven sites are detected as clusters of overlapping words

n van Helden,J., André,B. and Collado-Vides,J. (1998) J Mol Biol, 281, 827–842. 26
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Reproducibility

Same analysis as in 1998 : 

retrieve-seq à oligo-analysis à dna-motif à feature-map

ran on RSAT server (http://rsat.eu) on Jan 12, 2025

Main change: background color

http://rsat.eu/


Genes SAM2, MET6, MUP3, MET30, MET3, MET14, MET1, SAM1, MET17, ZWF1, MET2
Known motifs TCACGTG  AAAACTGTGG
Factors Cbf1p/Met4p/Met28p  Met31p; Met32p

Hexanucleotide analysis of the MET regulon

n28n van Helden,J., André,B. and Collado-Vides,J. (1998) J Mol Biol, 281, 827–842.



Feature-map of discovered motifs - MET regulon
n Two distinct motifs (combinations of words) are apparent.

q blue-green TCACGTGA Met4p/Met28p/Cbf1p
q red-violet AAACTGTG Met31p; Met32p 

n Multiple clustered motifs ar sometimes found, but not always.
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Expected frequency calibration

n van Helden et al. (1998). J Mol Biol 281(5), 827-42.

n The results of string-based motif discovery depend drastically 
on the choice of a background model.

n Taking the MET regulon as example
q With 6nt calibration in intergenic sequences, the Met4p 

binding site appears at rank 1, and Met31p at rank 3
q With equiprobable nucleotides, Met4p only appears are 

rank 20, and Met31p at rank 32. In other terms, they will 
never be considered as the most interesting motifs

q With a single-nucleotide calibration, the Met4p appears at 
rank 4 and Met31p at rank 13. The first motif would thus 
have been easily detected, but not the second one.

n30



Effect of oligonucleotide size on the significance

n31n van Helden et al. (1998). J Mol Biol 281(5), 827-42.



oligo-analysis results with known regulons (sig > 1)

n32n van Helden et al. (1998). J Mol Biol 281(5), 827-42.



Hexanucleotide analysis of the GAL regulon
n With the GAL regulon, the program returns a single motif.

q The significance of this motif is very low.
q This level of significance is expected at random ~ once per sequence set.
q This can be considered as a negative result: the program did not detect any really significant motif.

n Why did the program fail to discover the GAL4 motif ? 
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Genes GAL1, GAL2, GAL7, GAL80, MEL1, GCY1
Known motifs  Factors
CGGn5wn5CCG Gal4p



DNA/protein interface of the yeast transcription factor Gal4p
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Occurrences of  3nt dyads in the GAL regulon
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CGGn11CCG



Genes GAL1, GAL2, GAL7, GAL80, MEL1, GCY1
Known motif CGGn5wn5CCG 
Factor Gal4p

Dyad analysis of the GAL regulon

n36



Feature-map of discovered motifs - GAL regulon
n Clusters of overlapping dyads indicates that conservation extends over 3 bp on each side of the dyad.
n Some genes, but not all, contain multiple motifs (synergic effect).
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Dyad analysis: regulons of Zn cluster proteins

n38n van Helden et al. (2000). Nucleic Acids Res 28(8), 1808-18.



Experimental
measurement of activity

Motifs discovered by dyad analysis

Comparison of discovered motifs with known cis-regulatory binding sites (LYS regulon)
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Quantitative evaluation 
of motif discovery results

Regulatory Sequence Analysis

40



Validation of motif discovery with yeast regulons

Simonis et al. (2004). Bioinformatics 20: 2370-2379.

n These figures regroup over-represented motifs detected with
q oligo-analysis
q dyad-analysis

n Regulons were collected from TRANSFAC and aMAZE.
n All the regulons with  ≥5 genes were analysed.

q Significant motifs (sig ³ 2) are detected in 65% of the 
regulons.

n As a negative control, sets of random genes were analysed.
q The rate of false positive follows pretty well the statistical 

expectation.

41



Assessment of motif discovery in yeast regulons - Saccharomyces cerevisiae

Sand, O., Turatsinze, J. V. and van Helden, J (2008). Evaluating the prediction of cis-acting regulatory elements in 
genome sequences In Modern genome annotation: the BioSapiens network (Springer).

n As a control, we compare the significance of motifs discovered
q in regulons (positive control) 
q in random gene selections (negative control)

n In the yeast Saccharomyces cerevisiae 
q FPR fits remarkably well the binomial P-value.
q When the significance threshold increases, 
• sensitivity decreases (less motifs found in regulons) 
• specificity increases (less motifs in random selections)
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Rate of false positive in different organisms
n The analysis of random gene selections allows to evaluate the rate of false positive returned by a motif discovery 

program.
n The rate of false positive is good for microbes (bacteria, yeasts, ...), but increases for multicellular organisms (e.g. 

the fly Drosophila, the plant Arabidopsis thaliana, …).
n The rate of false positive is also higher in the protozoan Plasmodium falciparum (the agent of the malaria) than in 

bacteria and yeast. 
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Rate of false positive in higher organisms
n The rate of false positive increases dramatically with higher organisms.
n This is likely to come from 

q a bad treatment of repetitive elements : genome-scale calibration does not account for local frequencies
q positional heterogeneities : oligonucleotide frequencies depend on the distance from the gene
q the higher heterogeneity of genomic sequences in these organisms (GC-rich vs AT-rich promoters)

n We are currently developing more elaborate background models to treat this problem.
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Motif significance in regulons - Homo sapiens

Sand, O., Turatsinze, J. V. and van Helden, J (2008). Evaluating the prediction of cis-acting regulatory elements in 
genome sequences In Modern genome annotation: the BioSapiens network (Springer).

n In Homo sapiens
q False positive rate (FPR) much higher than theoretical expectation
q Significance score is quite inefficient to distinguish between reliable 

motifs and false positives.
q Reasons:
• Inadequacy of background models.
• Actual TFBS are not restricted to proximal promoters. 
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Assessment of motif discovery in regulons – Yeast versus Human

n In Homo sapiens
q False positive rate (FPR) much higher than theoretical 

expectation.
q Significance score cannot distinguish between reliable motifs 

and false positives.
q Reasons:
• Inadequacy of background models.
• Actual TFBS are not restricted to proximal promoters. 

n As a control, we compare the significance of motifs discovered
q regulons (positive control) 
q random gene selections (negative control)

n In the yeast Saccharomyces cerevisiae 
q FPR fits remarkably well the binomial P-value.
q When the significance threshold increases, 
• sensitivity decreases (less motifs found in regulons) 
• specificity increases (less motifs in random gene selections)

46
Sand, O., Turatsinze, J. V. and van Helden, J (2008). Evaluating the prediction of cis-acting regulatory elements in genome sequences In Modern genome annotation: 
the BioSapiens network (Springer).

Olivier Sand

Jean Valéry 
Turatsinze



String-based motif discovery: strengths
n Deterministic (not heuristic) and exhaustive

q all possible words/dyads are tested
q ability to return several motifs in a single run

n Speed
q co-expression clusters are treated within seconds

n Time increases linearly with sequence set
q Can be applied to very large sequence sets (full genomes)
q Realistic application: ChIP-seq peaks generally cover several Mb or even tens of Mb. Such files are treated 

in a few minutes on a personal laptop. 
n Ability to return a negative answer

q "not a single over-represented motif in this sequence set"
q Corollary: very low false positive rate

n Ability to detect over-represented, but also under-represented motifs 
q (e.g. restriction sites in bacterial genomes)

n Motif assembly refines the result
q ability to detect some level of degeneracy 

(result contains words differing by single substitutions)
q ability to detect motifs larger than the oligonucleotide size

(result contains strongly overlapping words)
47



String-based motif discovery: weaknesses
n No direct treatment of motif degeneracy

q NB: degenerated words can be analyzed with similar statistics, but it is not tractable due to the increase of 
the number of motifs: 15k possible words of length k.

n String motifs are poor descriptions for genome-scale motif matching. 
q Matrices are more appropriate to describe the weight of each substitution at a given position.

n Solution 
q string-based approach for motif discovery (RSAT programs oligo-analysis, dyad-analysis, position-analysis, 

local-words).
q use discovered strings as seeds for building a matrix, which can be used for motif search (RSAT program 

matrix-from-motifs) 
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Position-analysis

49



Word position distribution
n Positions relative to the stop codon

n van Helden, J., del Olmo, M. and Pérez-Ortín, J.E. (2000) Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. 
Nucleic Acids Res, 28, 1000–1010. n50
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Profiles of hexanucleotides distribution around 1500 yeast TSS
n Positions relative to the cleavage site

n van Helden, J., del Olmo, M. and Pérez-Ortín, J.E. (2000) Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. 
Nucleic Acids Res, 28, 1000–1010. 51
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Clusters of positionally biased k-mers around termination sites

van Helden, J., del Olmo, M. and Pérez-Ortín, J.E. (2000) Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res, 28, 
1000–1010. 52
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Detecting heterogeneous repartition along sequences

position-analysis method
n van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28, 1000-10.
Application to chip-seq: 
n Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. (2012). RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40(4): e31.
n Thomas-Chollier M, Darbo E, Herrmann C, Defrance M, Thieffry D, van Helden J. (2012). A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nat Protoc 

7(8): 1551-1568. 53
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Detecting biases in word positions
n The program position-analysis (van Helden et al., 2000) detects words showing a heterogeneous distribution of occurrences 

across a set of input sequences.
n Principle: for each word

q Compute the number of occurrences in non-overlapping windows starting from a reference point (sequence start, center or end).
q Compute the expected occurrences in each window according to a homogeneous distribution model.
q Compute the difference between the observed and expected positional distribution (chi2 test for goodness of fit).

n Example: Sox2 peaks from Chen, 2008
q 10,929 peaks of size between 60 and 1,059 bp
q Word length k=7
q Reference position: the center of each peak.
q The most significant word is ACAAAGG, which corresponds to the Sox2 consensus.

54

n Green: expected occurrences
q Note: the expectation 

decreases with the 
distance to peak center 
because peaks have 
variable lengths.

n Blue: observed occurrences
q The word ACAAGG  is 

concentrated the center 
the ChIP-seq peak 
regions.

Windows



Position-analysis of dinucleotides around replication origins
n 65,009 peaks
n 2kb on each side of peak summits (130Mb analyzed in total)
n K-mer occurrences per 50bp windows
n Background model: homogeneous distribution
n Significance computed with Chi-square conformity test.
n Result: all dinucleotides are completely biased, with p-values < 1e-

300.
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Position-analysis of dinucleotides around replication origins
n 65,009 peaks
n 2kb on each side of peak summits (130Mb analyzed in total)
n K-mer occurrences per 50bp windows
n Background model: window-specific estimation based on 

nucleotide composition.
n Significance computed with Chi-square conformity test.
n Result: all dinucleotides are completely biased, with p-values < 1e-

300.
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Position-analysis of hexanucleotides around replication origins
n Background model: window-specific estimation based on nucleotide 

composition.
n A lot of very highly significant 6-mers.
n Most of them are low-complexity motifs (periodic k-mers).

57

ACACAC
- observed
- expected

GGGGGG
- observed
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GTGTAT
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Examples of applications

Regulatory Sequence Analysis
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Analysis of cell cycle data : results

n59
n Gene clusters from Spellman et al. (1998). Mol Biol Cell 9(12), 3273-97
n Motif discovery : van Helden et al. (2000). Nucleic Acids Res 28: 1808-1818.



Plasmodium erythrocytic cycle
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Under-expressed Over-expressed
Time Time

Over-represented oligos in promoters of under- and over-expressed genes at different time 
points of the erythrocytic cycle of Plasmodium falciparum
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Under-expressed Over-expressed

Time Time

Erythrocytic cycle in Plasmodium falciparum
Under- and over-expressed oligonucleotides in random gene selections
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Supplementary material

Regulatory Sequence Analysis
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Motif discovery: string-based algorithms
n Count occurrences observed for each word
n Calculate expected word frequencies

q Choice of a model : 
• independently distributed nucleotides 

(equiprobable or biased alphabet utilization)
• Markov chain : on basis of subword frequencies
• External reference (e.g. word frequencies observed in the whole set of upstream sequences)

n Calculate a score for each word
• obs/exp ratio (very bad)
• log-likelihood
• Z-value
• binomial probability

n Select all words above a defined threshold
q Statistical criterion for establishing the threshold

64



Motif significance in regulons - Homo sapiens
n In Homo sapiens

q The rate of false positive is much higher than the 
theoretical expectation

q The number of motifs detected in regulons is still 
higher, but the significance score is quite 
inefficient to distinguish between reliable motifs 
and false positives.

q This indicates that the background model is 
inadequate to treat the complexity of human 
promoters.
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