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Why do we need random models ?
n Any pattern discovery relies on an underlying model to estimate the random expectation. 

q This model can be simple (succession of independent and equiprobable nucleotides) or more elaborate (differences in 
oligonucleotide composition).

q The choice of an inappropriate model can lead to false conclusions. 
q In practice, a sequence model can be used to generate random sequences, which will serve to validate some theoretical 

assumptions.

n Example: comparison of observed and expected occurrences with the binomial distribution, as applied with 
oligo-analysis :

q Relies on an assumption that successive oligonucleotides are independent from each other. 
q This is clearly not the case: each k-letter word depends on the k-1 neighbour words on both sides. How far does it affect the 

conclusions ?
q We could test it by generating random sequences, counting words, and fitting the distribution of observed occurrences with a 

binomial distribution.
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Probability of a sequence segment

n What is the probability for a given sequence segment (oligonucleotide, “word”) to be found at a 
given position of a DNA sequence ?

n Different models can be chosen
q Bernoulli model

• Assumes independence between successive nucleotides.
• The probability of each residue is fixed a priori (prior residue probability)

n Example: P(A) = 0.35; P(T) = 0.32; P(C) = 0.17; P(G) = 0.16
• Particular case: equiprobable residues

n P(A) = P(T) = P(C) = P(G) = 0.25
n Simple, but NOT realistic !

q Markov model
• The probability of each residue depends on the m preceding residues.
• The parameter m is called the order of the Markov model
• Remark: a Markov model of order 0 is a Bernoulli model.
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Independent and equiprobable nucleotides

n The simplest model : Bernoulli with identically and independently  (i.i.d.) distributed 
nucleotides.
p = P(A) = P(C) = P(G) = P(T)= 0.25

n The probability of a sequence 
q Is the product of its residue probabilities (independence)
q Equiprobability: since all residues have the same probability, it is simply computed as the 

residue proba (p) to the power of the sequence length  (L)
• S is a sequence segment (e.g. an oligonucleotide)
• L length of the sequence segment
• p nucleotide probability
• P(S) is the probability to observe this sequence segment 

 at given position of a larger sequence

n Example
q P(CACGTG) = 0.256 = 2.44e-4
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Bernoulli model : independently distributed nucleotides

n A more refined model consists in using residue-specific probabilities. The probability of each residue is assumed 
to be constant on the whole sequence (Bernoulli schema). 

n The probability of a sequence is the product of its residue probabilities. 
q i = 1..k is the index of nucleotide positions
q ri is the residue found at position I
q P(ri) is the probability of this residue

n Example: non-coding sequences in the yeast genome
q P(A) = P(T) = 0.325 
q P(C) = P(G) = 0.175
q P(CACGTG) = P(C) P(A) P(C) P(G) P(T) P(G) 

 = 0.3252 * 0.1754 

 = 9.91E-5
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Saccharomyces cerevisiae
(Fungus)

Escherichia coli K12
(Proteobacteria)

Mycobacterium leprae 
(Actinobacteria)

Mycoplasma genitalium
(Firmicute, intracellular)

Bacillus subtilis
(Firmicute, extracellular)

Anopheles gambiae
(Insect)

Homo sapiens
(Mammalian)

Plasmodium falciparum
(Aplicomplexa, intracellular)

Bernoulli models
n A Bernoulli model assumes that 

q each residue has a specific prior probability
q this probability is constant over the sequence (no context dependencies)

n The heat-maps below depict the nucleotide frequencies in non-coding upstream sequences of various organisms.
n The frequencies of AT versus CG show strong inter-organism differences.
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Markov chains and transition matrices

n In a Markov model, the probability to find a letter at 
position i depends on the residues found at the m 
preceding residues. 

n The tables represent the transition matrices for 
Markov chain models of order m=1 (top) and m=2 
(bottom). 

n Each row specifies one prefix, each column one suffix. 
n The values indicate the probability to observe a given 

residue (suffix ri) at position (i) of the sequence, as a 
function of the m preceding residues 
(the prefix Si-m,i-1)

n Particular case
q A Bernoulli model can be seen as a Markov model 

of order 0.
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Markov model estimation (“training”)
n Transition frequencies for a Markov model of order m 

can be estimated from the frequencies observed for 
oligomers (k-mers) of length k=m+1 in a reference 
sequence set.

n Example
q The upper table shows dinucleotide frequencies 

(k=2) computed from the whole set of upstream 
sequences of the yeast Saccharomyces cerevisiae.

q This table can be used to estimate a Markov 
model of order m = k–1 = 1. 
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Exercise: estimate P(G|T) 
from the dinucleotide 
frequency table 



Examples of transition matrices
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n The two tables show the 
transition matrices for a 
Markov model of order 1 (top) 
and 2 (bottom), respectively.

n Trained with the whole set of 
non-coding upstream 
sequences of the yeast 
Saccharomyces cerevisiae. 

n Notice the high probability of 
transitions from AA to A and 
TT to T.

Prefix/Suffix A C G TP(Prefix)
aa 0.416 0.151 0.187 0.246 0.119
ac 0.352 0.181 0.171 0.297 0.053
ag 0.339 0.202 0.193 0.267 0.057
at 0.346 0.166 0.162 0.326 0.092
ca 0.344 0.185 0.180 0.291 0.060
cc 0.305 0.200 0.171 0.324 0.035
cg 0.282 0.232 0.193 0.294 0.031
ct 0.241 0.189 0.184 0.385 0.058
ga 0.411 0.144 0.187 0.257 0.055
gc 0.334 0.192 0.182 0.293 0.038
gg 0.315 0.220 0.194 0.271 0.033
gt 0.307 0.156 0.200 0.338 0.050
ta 0.304 0.184 0.160 0.352 0.087
tc 0.313 0.192 0.152 0.343 0.057
tg 0.300 0.214 0.180 0.307 0.055
tt 0.218 0.194 0.164 0.423 0.120
Sum

5.127 3.000 2.860 5.013
P(suffix) 0.321 0.183 0.176 0.319

Pre/Suffix A C G T P(Prefix)
a 0.371 0.165 0.178 0.285 0.321
c 0.327 0.190 0.167 0.316 0.183
g 0.312 0.214 0.189 0.285 0.177
t 0.273 0.179 0.173 0.375 0.320
Sym 1.283 0.748 0.708 1.261
P(suffix) 0.321 0.183 0.176 0.320



Markov chains and Bernoulli models
n By extension of the concept of Markov chain, Bernoulli models can be qualified as Markov models of order 0 (the 

order 0 means that there is no dependency between a residue and the preceding ones). 
n The prior probabilities of a Makov model of order m=0 can be estimated from the residue of single nucleotides 

(k=m+1=1) in a background sequence set. 
n The table below shows the residue frequencies in the genomes of the yeast Saccharomyces cerevisiae and the 

bacteria Escherichia coli K12, respectively. 
n Notice the strong differences between these genomes. 
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Scoring a sequence segment with a Markov model

n Exercise: compute the probability P(S|B) of a sequence segment S with a background 
Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding 
upstream sequences. 
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Background sequences
n The frequencies observed for a k-letter word in a reference sequence set (background sequence) can be used to 

estimate the expected frequencies of the same k-letter word in the sequences to be analyzed. 
n Typical background models:

q Whole genome
• But this will bias the estimates towards coding frequencies, especially in microbial organisms, where the majority of 

the genome is coding.
q Whole set of intergenic sequences

• More accurate than whole-genome estimates, but still biased because intergenic sequences include both upstream and 
downstream sequences

q Whole set of upstream sequences, same sizes as the sequences to be analyzed
• Requires a calibration for each sequence size

q Whole set of upstream sequences, fixed size (default on the web site)
• Reasonably good estimate for microbes, NOT for higher organisms.
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Nucleotide composition of the Plasmodium upstream sequences
n The genome shows a strong richness in A and T residues (80%AT).
n This enrichment is even stronger in upstream non-coding sequences (86%AT).
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Dinucleotide composition of the Plasmodium upstream sequences
n Dinucleotide frequencies reflect the AT-richness.
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Markov order m=1 
(derived from dinucleotides k=2)



Transition frequencies
n On the basis of oligonucleotide frequencies, 

one can compute Markov models, which 
indicate the probability to osberve a certain 
residue (suffix) after a certain oligonucleotide 
(prefix).

n The Markov model can be represented in the 
form of a transition table. 

24

Markov order m=1 
(based on dinucleotides k=2)

Markov order m=2
(based on trinucleotides k=3)

Markov order m=3
(based on tetranucleotides k=4)



Markov models show strong variations between organisms

25

Mycoplasma genitalium
(Firmicute, intracellular)

Saccharomyces cerevisiae
(Fungus)

Escherichia coli K12
(Proteobacteria)

Mycobacterium leprae 
(Actinobacteria)

Anopheles gambiae
(Insect)

Homo sapiens
(Mammalian)

Bacillus subtilis
(Firmicute, extracellular)

Plasmodium falciparum
(Aplicomplexa, intracellular)



Chaos representation - upstream frequencies
n The chaos representation (Jeffrey, 1990) permits to visualize oligonucleotide frequencies and detect enrichment 

in particular ones.
n Plasmodium upstream sequences are particularly rich for the following motifs 

q A, T nucleotides
q Oligonucleotides made of As and Ts only 

(last rw pf each chaos map)
q Poly-A and poly-T oligos (bottom corners of the maps)
q (TA){n} motifs (the darkest boxes from dinucleotides to tetranucleotides. 

n Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Res (1993) vol. 21 
(10) pp. 2487-91

n Jeffrey. Chaos game representation of gene structure. Nucleic Acids Res (1990) vol. 18 (8) pp. 2163-70 26

Source: Goldman, 1993)

Nucleotides
CC GC CG GG

AC TC AG TG

CA GA CT GT

AA TA AT TT

Dinucleotides

CCA GCA CGA GGA

ACA TCA AGA TGA

CAA GAA CTA GTA

AAA TAA ATA TTA

CCG GCG CGG GGG

ACG TCG AGG TGG

CAG GAG CTG GTG

AAG TAG ATG TTG

CCT GCT CGT GGT

ACT TCT AGT TGT

CAT GAT CTT GTT

AAT TAT ATT TTT

Trinucleotides Tetranucleotides



Hexanucleotide frequencies in Plasmodium – Genome versus upstream (2Kb)

n Hexanucleotides show a very wide range of frequencies in the whole genome (X axis) as well as in the subset of 
upstream sequences (max 2kb, Y axis).
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