

Sequence models (Bernoulli and Markov models)

Jacques van Helden

<https://orcid.org/0000-0002-8799-8584>

Aix-Marseille Université, France
Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB)
<http://www.france-bioinformatique.fr>

Why do we need random models ?

- Any pattern discovery relies on an underlying model to estimate the random expectation.
 - This model can be simple (succession of independent and equiprobable nucleotides) or more elaborate (differences in oligonucleotide composition).
 - The choice of an inappropriate model can lead to false conclusions.
 - In practice, a sequence model can be used to generate random sequences, which will serve to validate some theoretical assumptions.
- Example: comparison of observed and expected occurrences with the binomial distribution, as applied with oligo-analysis :
 - Relies on an assumption that successive oligonucleotides are independent from each other.
 - This is clearly not the case: each k-letter word depends on the k-1 neighbour words on both sides. How far does it affect the conclusions ?
 - We could test it by generating random sequences, counting words, and fitting the distribution of observed occurrences with a binomial distribution.

Probability of a sequence segment

- What is the probability for a given sequence segment (oligonucleotide, “word”) to be found at a given position of a DNA sequence ?
- Different models can be chosen
 - **Bernoulli model**
 - Assumes independence between successive nucleotides.
 - The probability of each residue is fixed a priori (*prior residue probability*)
 - Example: $P(A) = 0.35$; $P(T) = 0.32$; $P(C) = 0.17$; $P(G) = 0.16$
 - Particular case: equiprobable residues
 - $P(A) = P(T) = P(C) = P(G) = 0.25$
 - Simple, but **NOT realistic** !
 - **Markov model**
 - The probability of each residue depends on the ***m*** preceding residues.
 - The parameter ***m*** is called the ***order*** of the Markov model
 - Remark: a Markov model of order 0 is a Bernoulli model.

- The simplest model : Bernoulli with identically and independently (i.i.d.) distributed nucleotides.

$$p = P(A) = P(C) = P(G) = P(T) = 0.25$$

$$P(S) = p^L$$

- The probability of a sequence
 - Is the product of its residue probabilities (independence)
 - Equiprobability: since all residues have the same probability, it is simply computed as the residue proba (p) to the power of the sequence length (L)
 - S is a sequence segment (e.g. an oligonucleotide)
 - L length of the sequence segment
 - p nucleotide probability
 - $P(S)$ is the probability to observe this sequence segment at given position of a larger sequence
- Example
 - $P(\text{CACGTG}) = 0.25^6 = 2.44\text{e}^{-4}$

Bernoulli model : independently distributed nucleotides

- A more refined model consists in using residue-specific probabilities. The probability of each residue is assumed to be constant on the whole sequence (Bernoulli schema).
- The probability of a sequence is the product of its residue probabilities.
 - $i = 1..k$ is the index of nucleotide positions
 - r_i is the residue found at position i
 - $P(r_i)$ is the probability of this residue
- Example: non-coding sequences in the yeast genome
 - $P(A) = P(T) = 0.325$
 - $P(C) = P(G) = 0.175$
 - $P(CACGTG) = P(C) P(A) P(C) P(G) P(T) P(G)$
 $= 0.325^2 * 0.175^4$
 $= 9.91E^{-5}$

$$P(S) = \prod_{i=1}^L P(r_i)$$

Bernoulli models

- A Bernoulli model assumes that
 - each residue has a specific prior probability
 - this probability is constant over the sequence (no context dependencies)
- The heat-maps below depict the nucleotide frequencies in non-coding upstream sequences of various organisms.
- The frequencies of AT versus CG show strong inter-organism differences.

Saccharomyces cerevisiae
(Fungus)

Mycoplasma genitalium
(Firmicute, intracellular)

Plasmodium falciparum
(Apicomplexa, intracellular)

Escherichia coli K12
(Proteobacteria)

Bacillus subtilis
(Firmicute, extracellular)

Mycobacterium leprae
(Actinobacteria)

Anopheles gambiae
(Insect)

Homo sapiens
(Mammalian)

Transition matrix, order 1

	a	c	g	t
A	$P(A A)$	$P(C A)$	$P(G A)$	$P(T A)$
C	$P(A C)$	$P(C C)$	$P(G C)$	$P(T C)$
G	$P(A G)$	$P(C G)$	$P(G G)$	$P(T G)$
T	$P(A T)$	$P(C T)$	$P(G T)$	$P(T T)$

Transition matrix, order 2

Pref	A	C	G	T
AA	$P(A AA)$	$P(C AA)$	$P(G AA)$	$P(T AA)$
AC	$P(A AC)$	$P(C AC)$	$P(G AC)$	$P(T AC)$
AG	$P(A AG)$	$P(C AG)$	$P(G AG)$	$P(T AG)$
AT	$P(A AT)$	$P(C AT)$	$P(G AT)$	$P(T AT)$
CA	$P(A CA)$	$P(C CA)$	$P(G CA)$	$P(T CA)$
CC	$P(A CC)$	$P(C CC)$	$P(G CC)$	$P(T CC)$
CG	$P(A CG)$	$P(C CG)$	$P(G CG)$	$P(T CG)$
CT	$P(A CT)$	$P(C CT)$	$P(G CT)$	$P(T CT)$
GA	$P(A GA)$	$P(C GA)$	$P(G GA)$	$P(T GA)$
GC	$P(A GC)$	$P(C GC)$	$P(G GC)$	$P(T GC)$
GG	$P(A GG)$	$P(C GG)$	$P(G GG)$	$P(T GG)$
GT	$P(A GT)$	$P(C GT)$	$P(G GT)$	$P(T GT)$
TA	$P(A TA)$	$P(C TA)$	$P(G TA)$	$P(T TA)$
TC	$P(A TC)$	$P(C TC)$	$P(G TC)$	$P(T TC)$
TG	$P(A TG)$	$P(C TG)$	$P(G TG)$	$P(T TG)$
TT	$P(A TT)$	$P(C TT)$	$P(G TT)$	$P(T TT)$

$$P(r_i | S_{i-m,i-1})$$

- In a Markov model, the probability to find a letter at position i depends on the residues found at the m preceding residues.
- The tables represent the transition matrices for Markov chain models of order $m=1$ (top) and $m=2$ (bottom).
- Each row specifies one **prefix**, each column one **suffix**.
- The values indicate the probability to observe a given residue (suffix r_i) at position (i) of the sequence, as a function of the m preceding residues (the prefix $S_{i-m,i-1}$)
- Particular case
 - A Bernoulli model can be seen as a Markov model of order 0.

Markov model estimation (“training”)

- Transition frequencies for a Markov model of order m can be estimated from the frequencies observed for oligomers (k -mers) of length $k=m+1$ in a reference sequence set.
- Example
 - The upper table shows dinucleotide frequencies ($k=2$) computed from the whole set of upstream sequences of the yeast *Saccharomyces cerevisiae*.
 - This table can be used to estimate a Markov model of order $m = k-1 = 1$.

Dinucleotide frequencies		
Sequences	Occurrences	frequency
S	N(S)	F(S)
AA	526 149	0.112
AC	251 377	0.054
AG	275 056	0.059
AT	414 453	0.088
CA	294 423	0.063
CC	178 324	0.038
CG	146 052	0.031
CT	275 859	0.059
GA	277 343	0.059
GC	184 367	0.039
GG	173 404	0.037
GT	239 569	0.051
TA	369 980	0.079
TC	280 475	0.060
TG	279 932	0.060
TT	521 236	0.111

Markov model estimation (“training”)

- Transition frequencies for a Markov model of order m can be estimated from the frequencies observed for oligomers (k -mers) of length $k=m+1$ in a reference sequence set.
- Example
 - The upper table shows dinucleotide frequencies ($k=2$) computed from the whole set of upstream sequences of the yeast *Saccharomyces cerevisiae*.
 - This table can be used to estimate a Markov model of order $m = k-1 = 1$.

$$P(r_i | S_{1..m}) = \frac{F_{bg}(r_i | S_{1..m})}{\sum_{j \in A} F_{bg}(r_j | S_{1..m})} = \frac{F_{bg}(S_{1..m} r_i)}{\sum_{j \in A} F_{bg}(S_{1..m} r_j)}$$

$$\begin{aligned} P(G|T) &= \frac{F(G|T)}{\sum_{j \in A} F(j|T)} = \frac{F(TG)}{F(T^*)} \\ &= 0.060 \\ &= \frac{0.079 + 0.060 + 0.060 + 0.111}{0.079 + 0.060 + 0.060 + 0.111} \\ &= \frac{0.060}{0.310} = 0.194 \end{aligned}$$

Dinucleotide frequencies		
Sequences	Occurrences	Frequency
S	N(S)	F(S)
AA	526,149	0.112
AC	251,377	0.054
AG	275,056	0.059
AT	414,453	0.088
CA	294,423	0.063
CC	178,324	0.038
CG	146,052	0.031
CT	275,859	0.059
GA	277,343	0.059
GC	184,367	0.039
GG	173,404	0.037
GT	239,569	0.051
TA	369,980	0.079
TC	280,475	0.060
TG	279,932	0.060
TT	521,236	0.111

Transition matrix, order 1

Prefix \ Suffix	A	C	G	T	P(Prefix)	N(Suffix)
A	0.359	0.171	0.187	0.283	0.313	1,467,035
C	0.329	0.199	0.163	0.308	0.191	894,658
G	0.317	0.211	0.198	0.274	0.187	874,683
T	0.255	0.193	0.193	0.359	0.310	1,451,623
P(Suffix)	0.313	0.191	0.187	0.310		
N(Suffix)	1,467,895	894,543	874,444	1,451,117		

Examples of transition matrices

$$P(r_i | S_{i-m, i-1})$$

- The two tables show the transition matrices for a Markov model of order 1 (top) and 2 (bottom), respectively.
- Trained with the whole set of **non-coding upstream sequences** of the yeast *Saccharomyces cerevisiae*.
- Notice the high probability of transitions from **AA to A** and **TT to T**.

Pre/Suffix	A	C	G	T	P(Prefix)
a	0.371	0.165	0.178	0.285	0.321
c	0.327	0.190	0.167	0.316	0.183
g	0.312	0.214	0.189	0.285	0.177
t	0.273	0.179	0.173	0.375	0.320
Sym	1.283	0.748	0.708	1.261	
P(suffix)	0.321	0.183	0.176	0.320	

Pr	a	c	g	t
a	0.371	0.165	0.178	0.285
c	0.327	0.190	0.167	0.316
g	0.312	0.214	0.189	0.285
t	0.273	0.179	0.173	0.375

Prefix/Suffix	A	C	G	T	P(Prefix)
aa	0.416	0.151	0.187	0.246	0.119
ac	0.352	0.181	0.171	0.297	0.053
ag	0.339	0.202	0.193	0.267	0.057
at	0.346	0.166	0.162	0.326	0.092
ca	0.344	0.185	0.180	0.291	0.060
cc	0.305	0.200	0.171	0.324	0.035
cg	0.282	0.232	0.193	0.294	0.031
ct	0.241	0.189	0.184	0.385	0.058
ga	0.411	0.144	0.187	0.257	0.055
gc	0.334	0.192	0.182	0.293	0.038
gg	0.315	0.220	0.194	0.271	0.033
gt	0.307	0.156	0.200	0.338	0.050
ta	0.304	0.184	0.160	0.352	0.087
tc	0.313	0.192	0.152	0.343	0.057
tg	0.300	0.214	0.180	0.307	0.055
tt	0.218	0.194	0.164	0.423	0.120
Sum	5.127	3.000	2.860	5.013	
P(suffix)	0.321	0.183	0.176	0.319	

Pr	a	c	g	t
aa	0.416	0.151	0.187	0.246
ac	0.352	0.181	0.171	0.297
ag	0.339	0.202	0.193	0.267
at	0.346	0.166	0.162	0.326
ca	0.344	0.185	0.180	0.291
cc	0.305	0.200	0.171	0.324
cg	0.282	0.232	0.193	0.294
ct	0.241	0.189	0.184	0.385
ga	0.411	0.144	0.187	0.257
gc	0.334	0.192	0.182	0.293
gg	0.315	0.220	0.194	0.271
gt	0.307	0.156	0.200	0.338
ta	0.304	0.184	0.160	0.352
tc	0.313	0.192	0.152	0.343
tg	0.300	0.214	0.180	0.307
tt	0.218	0.194	0.164	0.423

Markov chains and Bernoulli models

- By extension of the concept of Markov chain, Bernoulli models can be qualified as Markov models of order 0 (the order 0 means that there is no dependency between a residue and the preceding ones).
- The prior probabilities of a Makov model of order $m=0$ can be estimated from the residue of single nucleotides ($k=m+1=1$) in a background sequence set.
- The table below shows the residue frequencies in the genomes of the yeast *Saccharomyces cerevisiae* and the bacteria *Escherichia coli K12*, respectively.
- Notice the strong differences between these genomes.

Markov order 0 = Bernouli

A	C	G	T	Genome
0.310	0.191	0.191	0.309	<i>Saccharomyces cerevisiae</i>
0.246	0.254	0.254	0.246	<i>Escherichia coli K12</i>

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m} | B) \prod_{i=m+1}^L P(r_i | S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m} | B) \prod_{i=m+1}^L P(r_i | S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m} | B) \prod_{i=m+1}^L P(r_i | S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT
3	P(A CT)	0,229	ctA	CCTA

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT
3	P(A CT)	0,229	ctA	CCTA
4	P(C TA)	0,193	taC	CCTAC

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT
3	P(A CT)	0,229	ctA	CCTA
4	P(C TA)	0,193	taC	CCTAC
5	P(T AC)	0,290	acT	CCTACT

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT
3	P(A CT)	0,229	ctA	CCTA
4	P(C TA)	0,193	taC	CCTAC
5	P(T AC)	0,290	acT	CCTACT
6	P(A CT)	0,229	ctA	CCTACTA

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

pos	P(R W)	wR	S	P(S)
1	P(CC)	0,038	cc	CC
2	P(T CC)	0,309	ccT	CCT
3	P(A CT)	0,229	ctA	CCTA
4	P(C TA)	0,193	taC	CCTAC
5	P(T AC)	0,290	acT	CCTACT
6	P(A CT)	0,229	ctA	CCTACTA
7	P(T TA)	0,339	taT	CCTACTAT
8	P(A AT)	0,311	atA	CCTACTATA
9	P(T TA)	0,339	taT	CCTACTATAT
10	P(G AT)	0,182	atG	CCTACTATATG
11	P(C TG)	0,209	tgC	CCTACTATATGC
12	P(C GC)	0,205	gcC	CCTACTATATGCC
13	P(C CC)	0,190	ccC	CCTACTATATGCC
14	P(A CC)	0,341	ccA	CCTACTATATGCCA
15	P(G CA)	0,189	caG	CCTACTATATGCCAG
16	P(A AG)	0,345	agA	CCTACTATATGCCAGA
17	P(A GA)	0,394	gaA	CCTACTATATGCCAGAA
18	P(T AA)	0,251	aaT	CCTACTATATGCCAGAA

Scoring a sequence segment with a Markov model

- Exercise: compute the probability $P(S|B)$ of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

S = CCTACTATATGCCAGAATT

Background model B

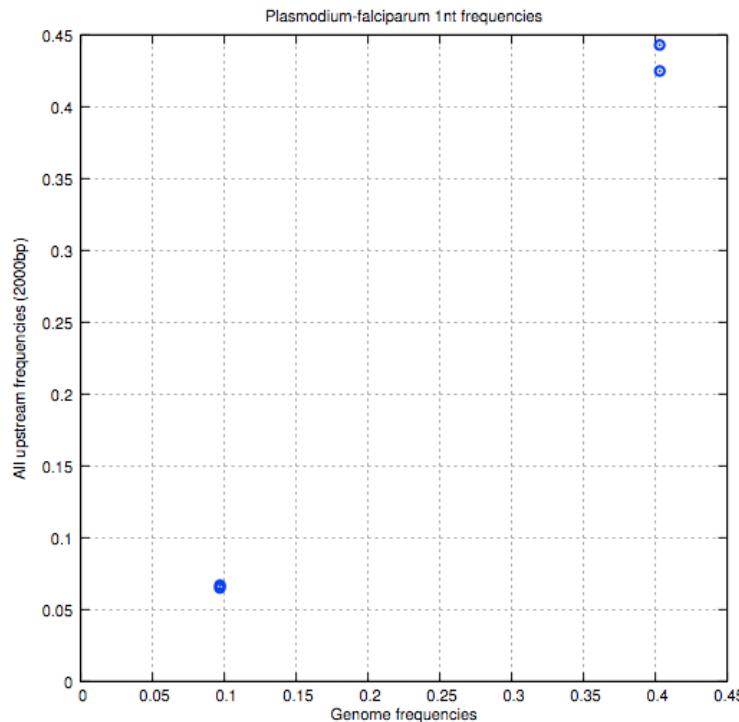
Sequence probability given the background model

$$P(S|B) = P(S_{1,m}|B) \prod_{i=m+1}^L P(r_i|S_{i-m,i-1}, B)$$

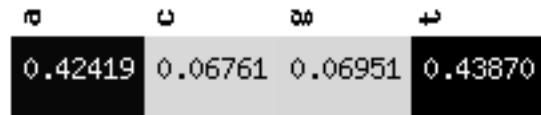
Transition matrix, order 2

Prefix/Suffix	A	C	G	T	P(Prefix)	N(Prefix)
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
CT	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

pos	P(R W)	wR	S	P(S)
1	P(CC)	0.038	cc	CC
2	P(T CC)	0.309	ccT	CCT
3	P(A CT)	0.229	ctA	CCTA
4	P(C TA)	0.193	taC	CCTAC
5	P(T AC)	0.290	acT	CCTACT
6	P(A CT)	0.229	ctA	CCTACTA
7	P(T TA)	0.339	taT	CCTACTAT
8	P(A AT)	0.311	atA	CCTACTATA
9	P(T TA)	0.339	taT	CCTACTATAT
10	P(G AT)	0.182	atG	CCTACTATATG
11	P(C TG)	0.209	tgC	CCTACTATATGC
12	P(C GC)	0.205	gcC	CCTACTATATGCC
13	P(C CC)	0.190	ccC	CCTACTATATGCC
14	P(A CC)	0.341	ccA	CCTACTATATGCCA
15	P(G CA)	0.189	caG	CCTACTATATGCCAG
16	P(A AG)	0.345	agA	CCTACTATATGCCAGA
17	P(A GA)	0.394	gaA	CCTACTATATGCCAGAA
18	P(T AA)	0.251	aaT	CCTACTATATGCCAGAA
19	P(T AT)	0.323	atT	CCTACTATATGCCAGAA

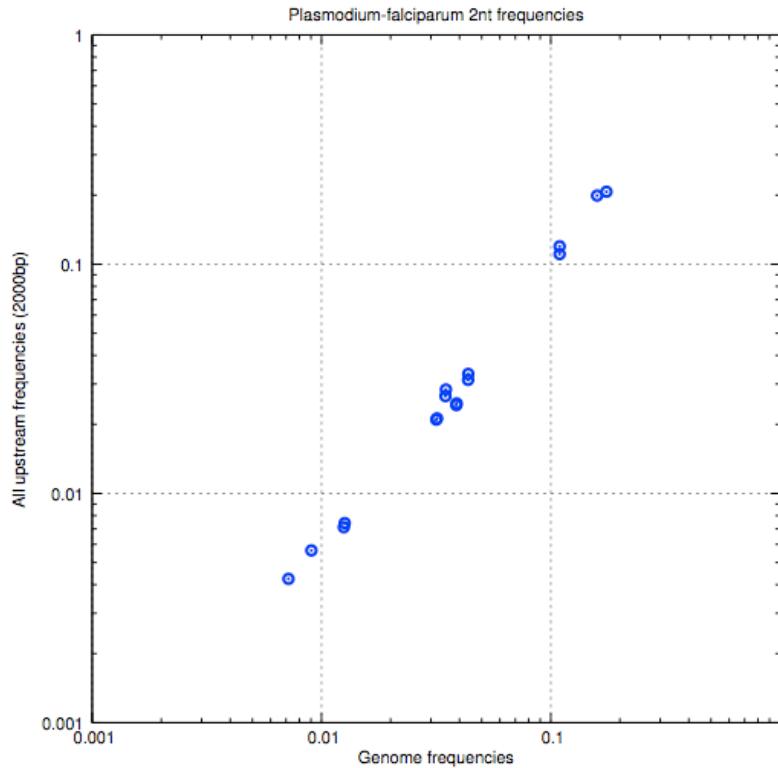

Background sequences

- The frequencies observed for a k -letter word in a reference sequence set (background sequence) can be used to estimate the expected frequencies of the same k -letter word in the sequences to be analyzed.
- Typical background models:
 - Whole genome
 - But this will bias the estimates towards coding frequencies, especially in microbial organisms, where the majority of the genome is coding.
 - Whole set of intergenic sequences
 - More accurate than whole-genome estimates, but still biased because intergenic sequences include both upstream and downstream sequences
 - Whole set of upstream sequences, same sizes as the sequences to be analyzed
 - Requires a calibration for each sequence size
 - Whole set of upstream sequences, fixed size (default on the web site)
 - Reasonably good estimate for microbes, NOT for higher organisms.


Nucleotide composition of the Plasmodium upstream sequences

- The genome shows a strong richness in A and T residues (80%AT).
- This enrichment is even stronger in upstream non-coding sequences (86%AT).

Frequencies


Upstream frequencies

Residue	Genome	Upstream (max 2kb)
a	0.42419	0.40
c	0.06761	0.10
g	0.06951	0.10
t	0.43870	0.44

Dinucleotide composition of the Plasmodium upstream sequences

- Dinucleotide frequencies reflect the AT-richness.

Residue	Genome	Upstream (max 2 kb)
AT	0.175	0.207
TA	0.159	0.199
TT	0.109	0.120
AA	0.109	0.111
TG	0.044	0.033
CA	0.044	0.031
GT	0.035	0.028
AC	0.035	0.027
GA	0.039	0.025
TC	0.039	0.024
AG	0.032	0.021
CT	0.032	0.021
CC	0.013	0.007
GG	0.013	0.007
GC	0.009	0.006
CG	0.007	0.004

*Markov order m=1
(derived from dinucleotides k=2)*

Pr	a	c	g	t
a	0.39983	0.06522	0.05243	0.48253
c	0.47917	0.13198	0.06745	0.32140
g	0.36686	0.08719	0.12634	0.41961
t	0.44833	0.05728	0.07758	0.41681

Transition frequencies

- On the basis of oligonucleotide frequencies, one can compute Markov models, which indicate the probability to observe a certain residue (suffix) after a certain oligonucleotide (prefix).
- The Markov model can be represented in the form of a transition table.

Markov order $m=1$
(based on dinucleotides $k=2$)

Pr	a	c	u	t
a	0.39983	0.06522	0.05243	0.48253
c	0.47917	0.13198	0.06745	0.32140
g	0.36686	0.08719	0.12634	0.41961
t	0.44833	0.05728	0.07758	0.41681

Markov order $m=2$
(based on trinucleotides $k=3$)

Pr	a	c	u	t
aa	0.55133	0.05771	0.06855	0.32241
ac	0.59611	0.10571	0.07782	0.22037
ag	0.45875	0.08478	0.16910	0.28737
at	0.60625	0.03631	0.08099	0.27645
ca	0.32382	0.11650	0.04995	0.50973
cc	0.36057	0.16777	0.04837	0.42329
cg	0.32114	0.10703	0.08672	0.48511
ct	0.28437	0.09985	0.07587	0.53991
ga	0.54541	0.06894	0.09101	0.29464
gc	0.49165	0.11509	0.08103	0.31223
gg	0.43450	0.07578	0.16309	0.32663
gt	0.43973	0.06254	0.13930	0.35844
ta	0.26328	0.06301	0.03410	0.63961
tc	0.38894	0.15242	0.05942	0.39921
tg	0.29671	0.08900	0.09461	0.51969
tt	0.29185	0.07502	0.06441	0.56871

Pr	a	c	u	t
aaa	0.69977	0.04927	0.06982	0.22979
aac	0.56265	0.10397	0.08086	0.21094
aag	0.46659	0.07425	0.02082	0.25943
aat	0.55314	0.03951	0.09485	0.23320
aca	0.35024	0.11699	0.07470	0.39940
acc	0.42076	0.13956	0.05156	0.28825
acg	0.35869	0.10224	0.09021	0.37986
act	0.32953	0.06427	0.09092	0.37859
aga	0.59498	0.05954	0.09654	0.24934
acg	0.52526	0.12236	0.07109	0.29597
agg	0.47636	0.07724	0.15773	0.29366
atg	0.45732	0.03399	0.23485	0.34464
ata	0.28109	0.05457	0.02782	0.73783
atc	0.48744	0.14610	0.06646	0.34163
atg	0.35388	0.08493	0.09695	0.35193
att	0.26339	0.07058	0.06215	0.37970
caa	0.51256	0.09844	0.08940	0.23097
cac	0.46954	0.10891	0.07047	0.27038
cag	0.46695	0.12951	0.14428	0.23467
cct	0.32552	0.07070	0.09950	0.32679
cca	0.35910	0.12537	0.05031	0.48263
ccc	0.31862	0.24852	0.03963	0.29424
cgg	0.37388	0.11667	0.07717	0.48688
cct	0.26231	0.10992	0.09513	0.57163
cga	0.47975	0.09404	0.08617	0.32986
cgc	0.49594	0.13945	0.09352	0.32952
cgt	0.39443	0.12024	0.14689	0.26284
cgt	0.40754	0.07779	0.13139	0.28410
cta	0.28781	0.12279	0.05551	0.57378
ctc	0.36301	0.16743	0.05648	0.31319
ctg	0.32028	0.12998	0.08812	0.38982
ctt	0.38091	0.16558	0.07477	0.33774
gaa	0.55060	0.09330	0.05751	0.26076
gac	0.58425	0.12584	0.10369	0.28531
gag	0.46608	0.16232	0.17786	0.23777
gtt	0.42644	0.07256	0.12445	0.39647
gtc	0.25561	0.12864	0.06259	0.53356
gca	0.36138	0.16281	0.05682	0.37179
gtg	0.33265	0.14795	0.08699	0.34380
gtt	0.36394	0.12070	0.08886	0.38159
gta	0.56253	0.07813	0.09406	0.29536
gtc	0.46171	0.14141	0.08953	0.29466
gtt	0.41895	0.07724	0.23109	0.27566
gtt	0.72529	0.09119	0.04065	0.27731
gtc	0.29983	0.11245	0.06728	0.52044
gtg	0.41518	0.17160	0.07744	0.33922
gtt	0.26188	0.12997	0.10396	0.29443
gtt	0.36369	0.12418	0.10057	0.34697
tta	0.46627	0.06216	0.05056	0.29553
tac	0.46549	0.09884	0.07073	0.22456
tgt	0.42957	0.09330	0.12541	0.24041
tat	0.62239	0.03019	0.07157	0.26555
tcc	0.39263	0.10085	0.04961	0.24411
tcc	0.33077	0.12949	0.04747	0.26427
tcc	0.30935	0.09330	0.06339	0.26089

Markov models show strong variations between organisms

Saccharomyces cerevisiae
(Fungus)

Pr	a	c	g	t
a	0.37000	0.16588	0.17908	0.28504
c	0.32610	0.19058	0.16818	0.31514
g	0.31163	0.21456	0.18957	0.28424
t	0.27256	0.17991	0.17364	0.37389

Mycoplasma genitalium
(Firmicute, intracellular)

Pr	a	c	g	t
a	0.45565	0.11743	0.13602	0.29091
c	0.39457	0.13008	0.06403	0.41132
g	0.31505	0.18738	0.12047	0.37710
t	0.32450	0.09573	0.11934	0.46044

Plasmodium falciparum
(Apicomplexa, intracellular)

Pr	a	c	g	t
a	0.39821	0.06446	0.05206	0.48527
c	0.47798	0.13336	0.06695	0.32171
g	0.36764	0.08587	0.12431	0.42217
t	0.44739	0.05676	0.07673	0.41912

Escherichia coli K12
(Proteobacteria)

Pr	a	c	g	t
a	0.34491	0.18156	0.17676	0.29677
c	0.30806	0.21557	0.22129	0.25507
g	0.27123	0.25972	0.21545	0.25360
t	0.24080	0.19176	0.21144	0.35599

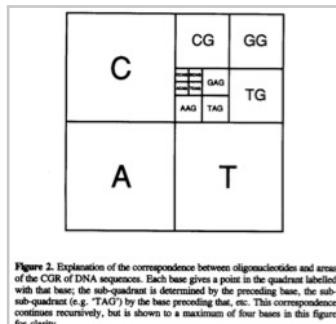
Mycobacterium leprae
(Actinobacteria)

Pr	a	c	g	t
a	0.23239	0.28694	0.25692	0.22375
c	0.24574	0.24601	0.30574	0.20252
g	0.21748	0.29238	0.25535	0.23479
t	0.18806	0.26081	0.31784	0.23329

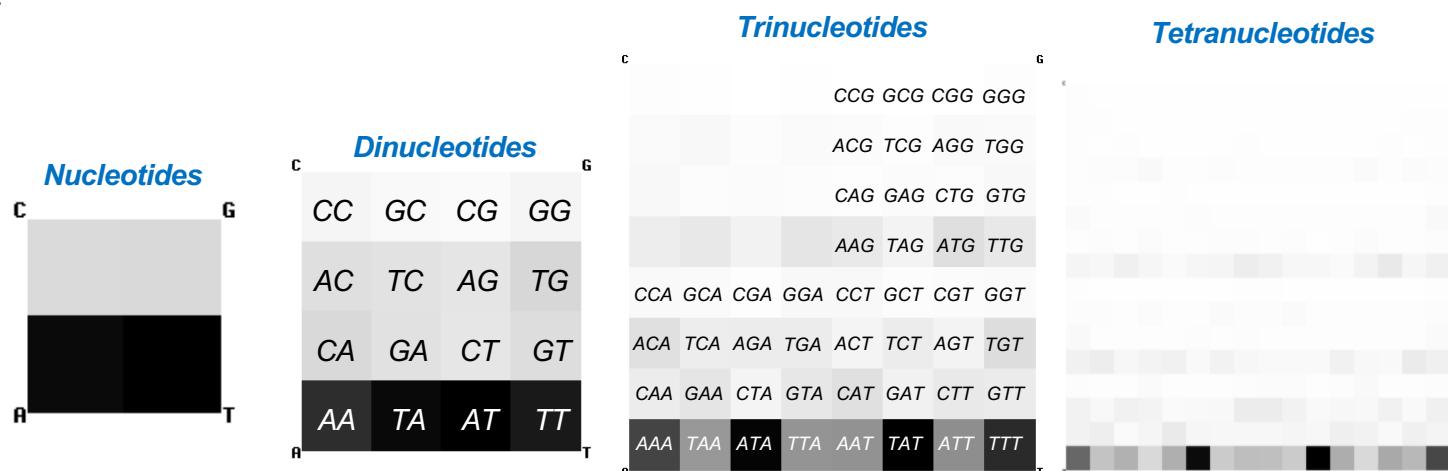
Bacillus subtilis
(Firmicute, extracellular)

Pr	a	c	g	t
a	0.38159	0.13935	0.18767	0.29139
c	0.33699	0.19499	0.16508	0.30293
g	0.34249	0.18100	0.23541	0.24110
t	0.25122	0.17199	0.19402	0.38278

Anopheles gambiae
(Insect)


Pr	a	c	g	t
a	0.34603	0.21388	0.18890	0.25119
c	0.31499	0.21232	0.24159	0.23109
g	0.26036	0.25414	0.20275	0.28275
t	0.20368	0.20710	0.24970	0.33951

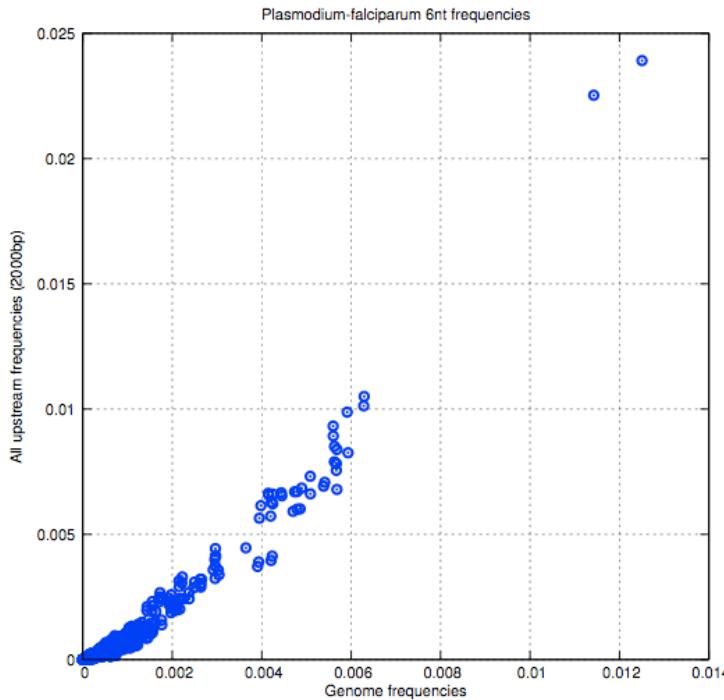
Homo sapiens
(Mammalian)


Pr	a	c	g	t
a	0.29760	0.19031	0.28856	0.22353
c	0.28019	0.30209	0.11692	0.30080
g	0.24408	0.24738	0.30309	0.20545
t	0.18589	0.23061	0.27491	0.30859

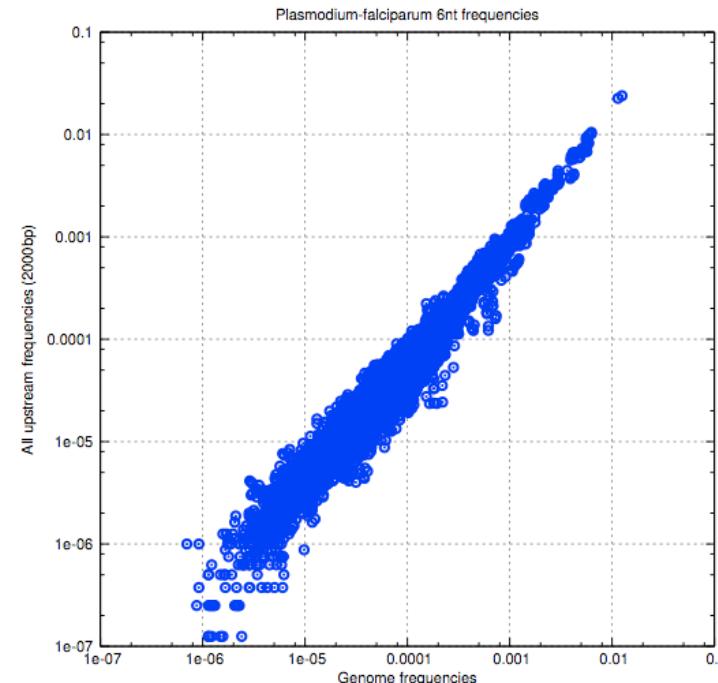
Chaos representation - upstream frequencies

- The chaos representation (Jeffrey, 1990) permits to visualize oligonucleotide frequencies and detect enrichment in particular ones.
- Plasmodium upstream sequences are particularly rich for the following motifs
 - A, T nucleotides
 - Oligonucleotides made of As and Ts only (last row of each chaos map)
 - Poly-A and poly-T oligos (bottom corners of the maps)
 - (TA) $\{n\}$ motifs (the darkest boxes from dinucleotides to tetranucleotides.

Source: Goldman, 1993)



- Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Res (1993) vol. 21 (10) pp. 2487-91
- Jeffrey. Chaos game representation of gene structure. Nucleic Acids Res (1990) vol. 18 (8) pp. 2163-70


Hexanucleotide frequencies in Plasmodium – Genome versus upstream (2Kb)

- Hexanucleotides show a very wide range of frequencies in the whole genome (X axis) as well as in the subset of upstream sequences (max 2kb, Y axis).

Linear scales

Logarithmic scales

