

Position-specific scoring matrices (PSSM)

Jacques van Helden

<https://orcid.org/0000-0002-8799-8584>

Aix-Marseille Université, France
Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB)
<http://www.france-bioinformatique.fr>

Introduction

- In the biological literature, the binding specificity of a transcription factor is often represented with a consensus string, which can be strict (e.g. CAGTGggg) or include some ambiguous residues (e.g. CACGTW).
- This representation is convenient to speak about a TF binding specificity, but it is by no way operational to predict TFBS.
- We describe in the following slides the theoretical grounds of the most commonly used representation models for transcription factor binding specificity: position-specific scoring matrices (TFBM).

Consensus representation

- The TRANSFAC database contains 8 binding sites for the yeast transcription factor Pho4p
 - 5/8 contain the core of high-affinity binding sites (CACGTG)
 - 3/8 contain the core of medium-affinity binding sites (CACGTT)
- The IUPAC ambiguous nucleotide code allows to represent variable residues.
- 15 letters to represent any possible combination between the 4 nucleotides (24 – 1=15).
- This representation however gives a poor idea of the relative importance of residues.

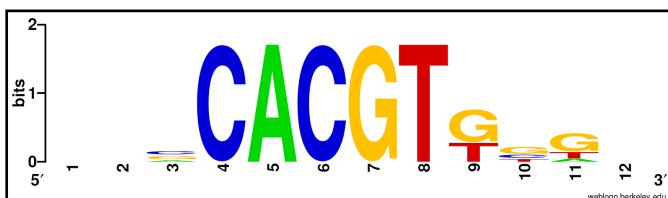
R06098	\TCA CACGTG GGA\
R06099	\GGC CACGTG CAG\
R06100	\TGA CACGTG GGT\
R06102	\CAG CACGTG GGG\
R06103	\TTC CACGTG CGA\
R06104	\ACG CACGTT GGT\
R06097	\CAG CACGTT TTC\
R06101	\TAC CACGTT TTC\
Cons	nnVCACGT KBDn

<i>IUPAC ambiguous nucleotide code</i>		
A	A	Adenine
C	C	Cytosine
G	G	Guanine
T	T	Thymine
R	A or G	puRine
Y	C or T	pYrimidine
W	A or T	Weak hydrogen bonding
S	G or C	Strong hydrogen bonding
M	A or C	aMino group at common position
K	G or T	Keto group at common position
H	A, C or T	not G
B	G, C or T	not A
V	G, A, C	not T
D	G, A or T	not C
N	G, A, C or T	aNy

From alignments to weights

Building a position-specific scoring matrix from a collection of sites

Alignment of Pho4p binding sites (TRANSFAC annotations)

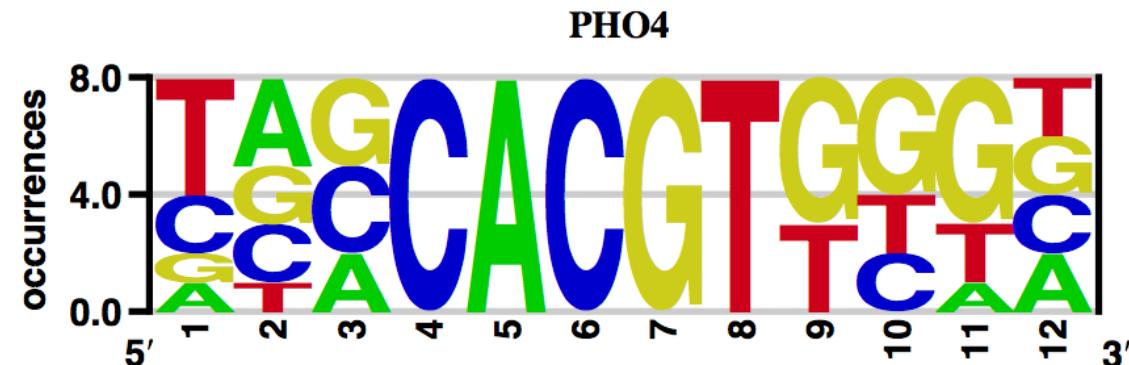

R06098	T	C	A	C	A	C	G	T	G	G	G	A
R06099	G	G	C	C	A	C	G	T	G	C	A	G
R06100	T	G	A	C	A	C	G	T	G	G	G	T
R06102	C	A	G	C	A	C	G	T	G	G	G	G
R06103	T	T	C	C	A	C	G	T	G	C	G	A
R06104	A	C	G	C	A	C	G	T	T	G	G	T
R06097	C	A	G	C	A	C	G	T	T	T	T	C
R06101	T	A	C	C	A	C	G	T	T	T	T	C

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
A	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
T	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo

(generated with Web Logo <http://weblogo.berkeley.edu/logo.cgi>)



Residue count matrix

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
A	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
T	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo
(generated with Web Logo <http://weblogo.berkeley.edu/logo.cgi>)

Frequency matrix

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
A	0,125	0,375	0,250	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,125	0,250
C	0,250	0,250	0,375	1,000	0,000	1,000	0,000	0,000	0,000	0,250	0,000	0,250
G	0,125	0,250	0,375	0,000	0,000	0,000	1,000	0,000	0,625	0,500	0,625	0,250
T	0,500	0,125	0,000	0,000	0,000	0,000	0,000	1,000	0,375	0,250	0,250	0,250
Sum	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

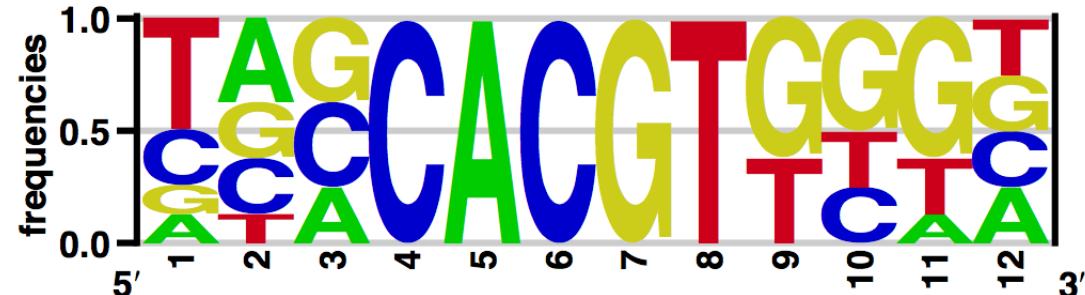
$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^A n_{i,j}}$$

A

n_{i,j}

p_i

f_{i,j}


alphabet size (=4)

occurrences of residue *i* at position *j*

prior residue probability for residue *i*

relative frequency of residue *i* at position *j*

PHO4

Count matrix with pseudo-count

1st option: identically distributed pseudo-weight (equiprobable residue priors)

Count matrix with pseudo-count

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (p_i)
A	1,25	3,25	2,25	0,25	8,25	0,25	0,25	0,25	0,25	0,25	1,25	2,25	0,25
C	2,25	2,25	3,25	8,25	0,25	8,25	0,25	0,25	0,25	2,25	0,25	2,25	0,25
G	1,25	2,25	3,25	0,25	0,25	0,25	8,25	0,25	5,25	4,25	5,25	2,25	0,25
T	4,25	1,25	0,25	0,25	0,25	0,25	0,25	8,25	3,25	2,25	2,25	2,25	0,25
Sum	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	1,00

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^A n_{i,j} + k}$$

2nd option: pseudo-weights distributed according to residue-specific priors

Count matrix with pseudo-count

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (p_i)
A	1,33	3,33	2,33	0,33	8,33	0,33	0,33	0,33	0,33	0,33	1,33	2,33	0,33
C	2,17	2,17	3,17	8,17	0,17	8,17	0,17	0,17	0,17	2,17	0,17	2,17	0,17
G	1,17	2,17	3,17	0,17	0,17	0,17	8,17	0,17	5,17	4,17	5,17	2,17	0,17
T	4,33	1,33	0,33	0,33	0,33	0,33	0,33	8,33	3,33	2,33	2,33	2,33	0,33
Sum	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^A n_{i,j} + k}$$

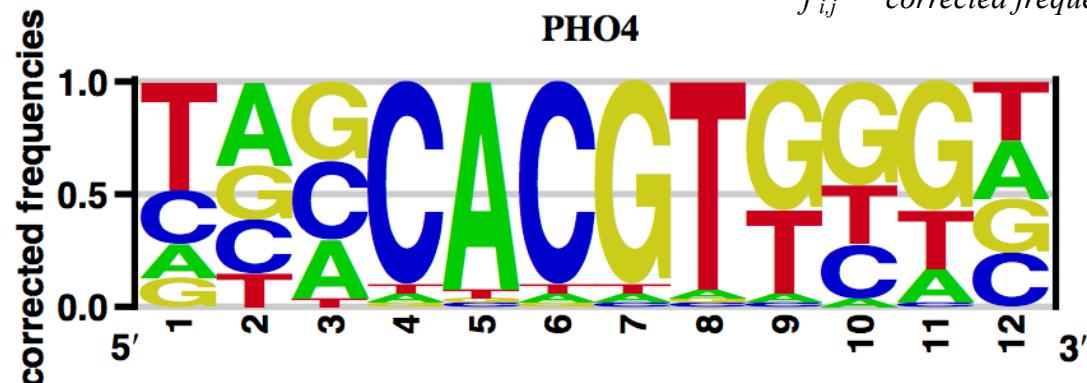
A alphabet size (=4)

$n_{i,j}$ occurrences of residue i at position j

p_i prior residue probability for residue i

$f_{i,j}$ relative frequency of residue i at position j

k pseudo weight (arbitrary, 1 in this case)


$f'_{i,j}$ corrected frequency of residue i at position j

Corrected frequency matrix

Residue\position	Frequency matrix corrected with pseudo-count												k= 1	Specific nucleotide frequencies
	1	2	3	4	5	6	7	8	9	10	11	12		
A	0,148	0,370	0,259	0,037	0,926	0,037	0,037	0,037	0,037	0,037	0,148	0,259	0,33	
C	0,241	0,241	0,352	0,908	0,019	0,908	0,019	0,019	0,019	0,241	0,019	0,241	0,17	
G	0,130	0,241	0,352	0,019	0,019	0,019	0,908	0,019	0,574	0,463	0,574	0,241	0,17	
T	0,481	0,148	0,037	0,037	0,037	0,037	0,037	0,926	0,370	0,259	0,259	0,259	0,33	
Sum	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^A n_{i,j} + k}$$

A alphabet size (=4)
 $n_{i,j}$ occurrences of residue i at position j
 p_i prior residue probability for residue i
 $f_{i,j}$ relative frequency of residue i at position j
 k pseudo weight (arbitrary, 1 in this case)
 $f'_{i,j}$ corrected frequency of residue i at position j

Weight matrix (Bernoulli model)

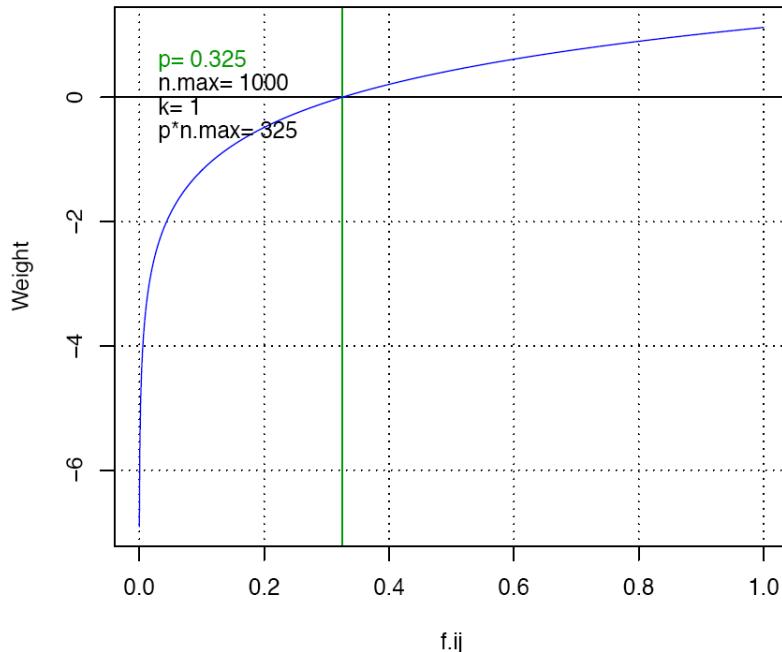
Residue\position	k= 1												Specific nucleotide frequencies
	1	2	3	4	5	6	7	8	9	10	11	12	
A	-0,35	0,05	-0,11	-0,95	0,45	-0,95	-0,95	-0,95	-0,95	-0,95	-0,35	-0,11	0,33
C	0,15	0,15	0,32	0,73	-0,95	0,73	-0,95	-0,95	-0,95	0,15	-0,95	0,15	0,17
G	-0,12	0,15	0,32	-0,95	-0,95	-0,95	0,73	-0,95	0,53	0,44	0,53	0,15	0,17
T	0,16	-0,35	-0,95	-0,95	-0,95	-0,95	-0,95	0,45	0,05	-0,11	-0,11	-0,11	0,33
Sum	-0,150	0,004	-0,427	-2,135	-2,415	-2,135	-2,135	-2,415	-1,330	-0,472	-0,880	0,093	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{r=1}^A n_{r,j} + k}$$

$$W_{i,j} = \ln\left(\frac{f'_{i,j}}{p_i}\right)$$

A alphabet size (=4)
 $n_{i,j}$ occurrences of residue i at position j
 p_i prior residue probability for residue i
 $f_{i,j}$ relative frequency of residue i at position j
 k pseudo weight (arbitrary, 1 in this case)
 $f'_{i,j}$ corrected frequency of residue i at position j
 $W_{i,j}$ weight of residue i at position j

The use of a weight matrix relies on Bernoulli assumption


If we assume, for the background model, an independent succession of nucleotides (Bernoulli model), the weight W_S of a sequence segment S is simply the sum of weights of the nucleotides at successive positions of the matrix ($W_{i,j}$).

In this case, it is convenient to convert the PSSM into a weight matrix, which can then be used to assign a score to each position of a given sequence.

Properties of the weight function

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^A n_{i,j} + k} \quad \sum_{i=1}^A f'_{i,j} = 1$$

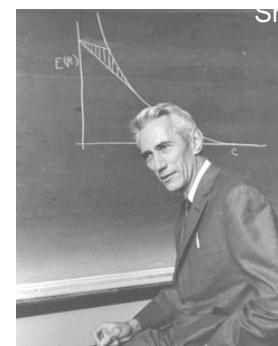
- The weight is
 - *positive* when $f'_{i,j} > p_i$
(favourable positions for the binding of the transcription factor)
 - *negative* when $f'_{i,j} < p_i$
(unfavourable positions)

Information content

Shannon uncertainty

- Shannon uncertainty
 - $H_s(j)$: uncertainty of a column of a PSSM
 - H_g : uncertainty of the background (e.g. a genome)
- Special cases of uncertainty (for a 4 letter alphabet)
 - $\min(H)=0$
 - No uncertainty at all: the nucleotide is completely specified (e.g. $p=\{1,0,0,0\}$)
 - $H=1$
 - Uncertainty between two letters (e.g. $p=\{0.5,0,0,0.5\}$)
 - $\max(H) = 2$ (Complete uncertainty)
 - One bit of information is required to specify the choice between each alternative (e.g. $p=\{0.25,0.25,0.25,0.25\}$).
 - Two bits are required to specify a letter in a 4-letter alphabet.
- R_{seq}
 - Schneider (1986) defines an information content based on Shannon's uncertainty.
- R_{seq}^*
 - For skewed genomes (i.e. unequal residue probabilities), Schneider recommends an alternative formula for the information content .
 - This is the formula that is nowadays used.

$$H_s(j) = - \sum_{i=1}^A f_{i,j} \log_2(f_{i,j})$$


$$H_g = - \sum_{i=1}^A p_i \log_2(p_i)$$

$$R_{seq}(j) = H_g - H_s(j)$$

$$R_{seq} = \sum_{j=1}^w R_{seq}(j)$$

$$R_{seq}^*(j) = \sum_{i=1}^A f_{i,j} \log_2\left(\frac{f_{i,j}}{p_i}\right)$$

$$R_{seq}^* = \sum_{j=1}^w R_{seq}^*(j)$$

Information content of a PSSM

Residue\position	k= 1												Specific nucleotide frequencies Prior (pi)
	1	2	3	4	5	6	7	8	9	10	11	12	
A	-0,12	0,04	-0,06	-0,08	0,95	-0,08	-0,08	-0,08	-0,08	-0,08	-0,12	-0,06	0,33
C	0,08	0,08	0,26	1,52	-0,04	1,52	-0,04	-0,04	-0,04	0,08	-0,04	0,08	0,17
G	-0,03	0,08	0,26	-0,04	-0,04	-0,04	1,52	-0,04	0,70	0,46	0,70	0,08	0,17
T	0,18	-0,12	-0,08	-0,08	-0,08	-0,08	-0,08	0,95	0,04	-0,06	-0,06	-0,06	0,33
Sum	0,112	0,092	0,370	1,318	0,791	1,318	1,318	0,791	0,620	0,405	0,476	0,043	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^A n_{i,j} + k}$$

$$I_{i,j} = f'_{i,j} \ln\left(\frac{f'_{i,j}}{p_i}\right)$$

$$I_j = \sum_{i=1}^A I_{i,j}$$

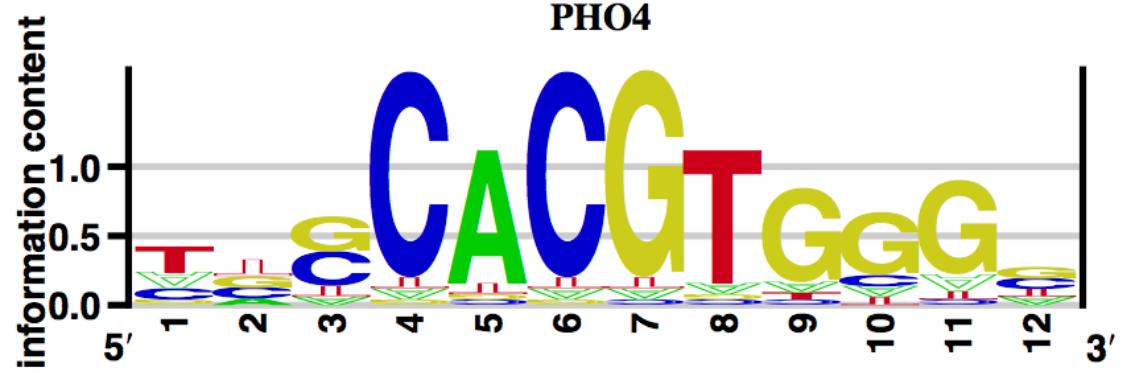
$$I_{matrix} = \sum_{j=1}^w \sum_{i=1}^A I_{i,j}$$

A alphabet size (=4)

$n_{i,j}$ occurrences of residue i at position j

w matrix width (=12)

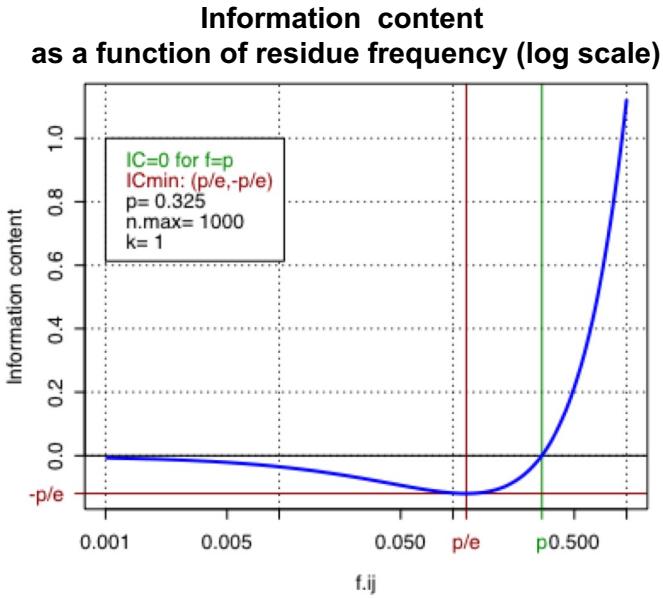
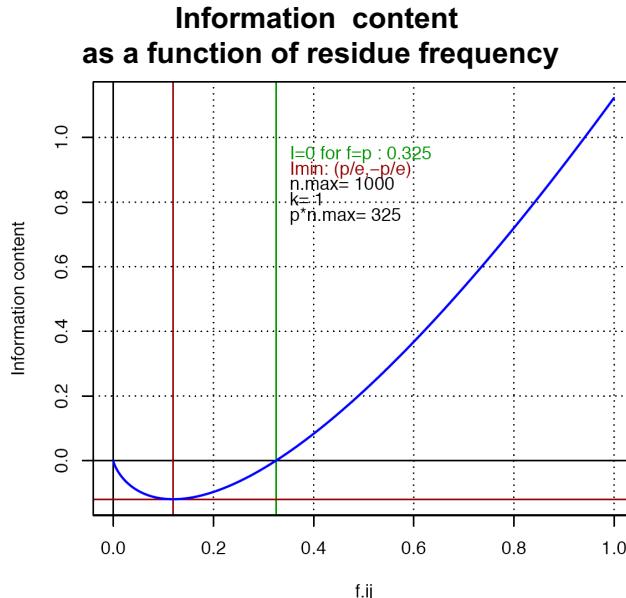
p_i prior residue probability for residue i


$f_{i,j}$ relative frequency of residue i at position j

k pseudo weight (arbitrary, 1 in this case)

$f'_{i,j}$ corrected frequency of residue i at position j

$W_{i,j}$ weight of residue i at position j



$I_{i,j}$ information of residue i at position j

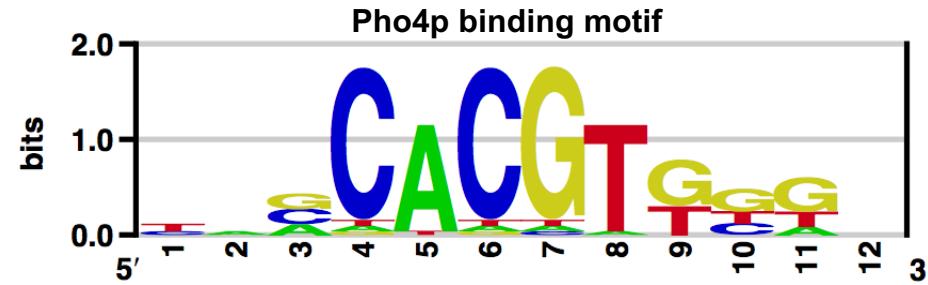
Information content I_{ij} of a cell of the matrix

- For a given cell of the matrix

- I_{ij} is positive when $f'_{ij} > p_i$
(i.e. when residue i is more frequent at position j than expected by chance)
- I_{ij} is negative when $f'_{ij} < p_i$
- I_{ij} tends towards 0 when $f'_{ij} \rightarrow 0$
because $\lim_{x \rightarrow 0} (x \ln(x)) = 0$

Information content of a column of the matrix

- For a given column i of the matrix
 - The information of the column (I_j) is the sum of information of its cells.
 - I_j is always positive
 - I_j is 0 when the frequency of all residues equal their prior probability ($f_{ij}=p_i$)
 - I_j is maximal when
 - the residue i_m with the lowest prior probability has a frequency of 1
(all other residues have a frequency of 0)
 - and the pseudo-weight is null ($k=0$).


$$I_j = \sum_{i=1}^A I_{i,j} = \sum_{i=1}^A f_{i,j}^* \ln\left(\frac{f_{i,j}^*}{p_i}\right)$$

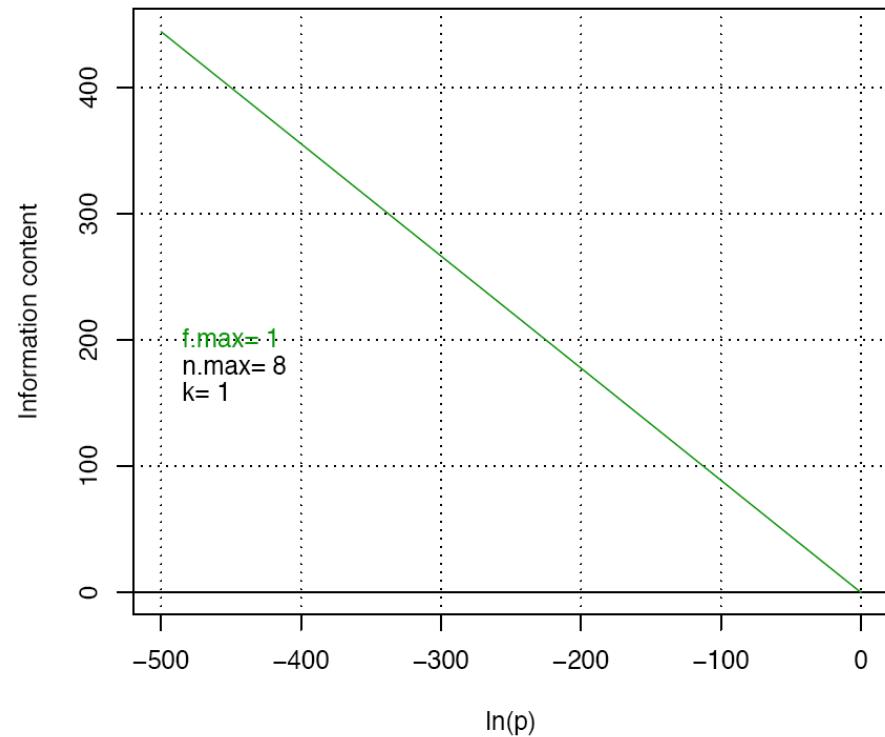
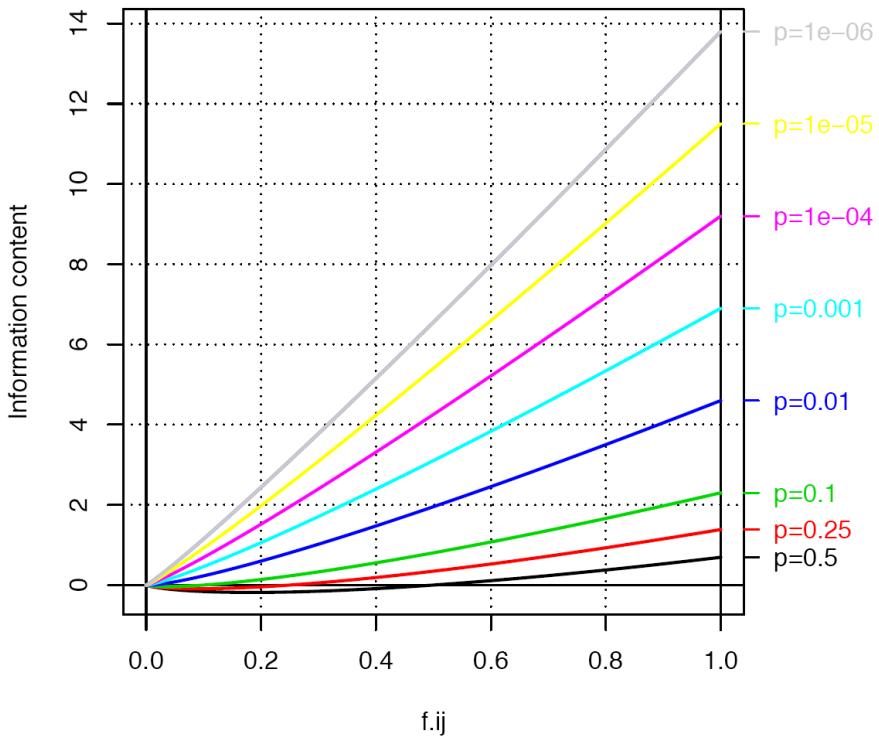
$$i_m = \arg \min_i (p_i) \quad k = 0$$
$$\max(I_j) = 1 \cdot \ln\left(\frac{1}{p_i}\right) = -\ln(p_i)$$

Schneider logos

- Schneider & Stephens(1990) propose a graphical representation based on his previous entropy (H) for representing the importance of each residue at each position of an alignment. He provides a new formula for Rseq
 - $H_s(j)$ uncertainty of column j
 - $R_{seq}(j)$ “information content” of column j (beware, this definition differs from Hertz’ information content)
 - $e(n)$ correction for small samples (pseudo-weight)
- Remarks
 - This information content does not include any correction for the prior residue probabilities (π)
 - This information content is expressed in bits.
- Boundaries
 - $\min(R_{seq})=0$ equiprobable residues
 - $\max(R_{seq})=2$ perfect conservation of 1 residue with a pseudo-weight of 0,
- Sequence logos can be generated
 - from aligned sequences on the Weblogo server <http://weblogo.berkeley.edu/logo.cgi>
 - From matrices or sequences on enologos <http://www.benoslab.pitt.edu/cgi-bin/enologos/enologos.cgi>

$$H_s(j) = - \sum_{i=1}^A f_{ij} \log_2(f_{ij})$$
$$R_{seq}(j) = 2 - H_s(j) + e(n)$$
$$h_{ij} = f_{ij} R_{seq}(j)$$

Information content of the matrix



- The total information content represents the capability of the matrix to make the distinction between a binding site (represented by the matrix) and the background model.
- The information content also allows to estimate an upper limit for the expected frequency of the binding sites in random sequences.
- The pattern discovery program consensus (developed by Jerry Hertz) optimises the information content in order to detect over-represented motifs.
- Note that this is not the case of all pattern discovery programs: the gibbs sampler algorithm optimizes a log-likelihood.

$$I_{matrix} = \sum_{j=1}^w \sum_{i=1}^A I_{i,j}$$

$$P(site) \leq e^{-I_{matrix}}$$

Information content: effect of prior probabilities

- The upper bound of I_j increases when p_i decreases
 - $I_j \rightarrow \text{Inf}$ when $p_i \rightarrow 0$
- The information content, as defined by Gerald Hertz, has thus no upper bound.

References - PSSM information content

- Seminal articles by Tom Schneider
 - Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. *J Mol Biol* 188: 415-431.
 - Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way to display consensus sequences. *Nucleic Acids Res* 18: 6097-6100.
 - Tom Schneider's publications online
 - <http://www.lecb.ncifcrf.gov/~toms/paper/index.html>
- Seminal article by Gerald Hertz
 - Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. *Bioinformatics* 15: 563-577.
- Software tools to draw sequence logos
 - Weblogo
 - <http://weblogo.berkeley.edu/logo.cgi>
 - Enologos
 - <http://biodev.hgen.pitt.edu/cgi-bin/enologos/enologos.cgi>