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Introduction

In the biological literature, the binding specificity of a transcription factor is often represented with a
consensus string, which can be strict (e.g. CAGTGggg) or include some ambiguous residues (e.g.
CACGTW).

This representation is convenient to speak about a TF binding specificity, but it is by no way operational
to predict TFBS.

We describe in the following slides the theoretical grounds of the most commonly used representation
models for transcription factor binding specificity: position-specific scoring matrices (TFBM).



Consensus representation

= The TRANSFAC database contains 8 binding sites for the yeast transcription factor Pho4p
o 5/8 contain the core of high-affinity binding sites (CACGTG)

o 3/8 contain the core of medium-affinity binding sites (CACGTT)
= The IUPAC ambigous nucleotide code allows to represent variable residues.
= 15 letters to represent any possible combination between the 4 nucleotides (24 — 1=15).

= This representation however gives a poor idea of the relative importance of residues.

R06098 \TCACACGTGGGA\ T AT R G 9 S
R0O6099 \GGCCACGTGCAG\ cC ¢C Cytosine
G G Guanine
R06100 \TGACACGTGGGT\ T T S
R06102 \CAGCACGTGGGG\ 5 é or 1(:?- p$R.in%.
or pYrimidine
R06103 \TTCCACGTGCGA\ W AorT Weak hydrogen bonding
R06104 \ACGCACGTTGGT\ 3' 2 org Sl’ill"long hydrogen bonding
or aMino group at common position
R0O6097 \CAGCACGTTTTC\ K GorT Keto group at common position
RO6101 \TACCACGTTTTC\ g é’ gz:'_ll'_ zg’iﬁ
V GAC not T
Cons nnVCACGTKBDn D GAorT not C
N G A CorT aNy

= TRANSFAC pulic version: http://www.gene-regulation.com/cgi-bin/pub/databases/transfac/search.cqgi =3
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Regulatory Sequence Analysis

From alignments to weights




Building a position-specific scoring matrix from a collection of sites

Alignment of Pho4p binding sites (TRANSFAC annotations)

R06098 T C A C A C T A
R06099 cC c A C T cC A
R06100 T A C A C T T
R06102 cC A cC A C T

R06103 T T C€C C A C T C A
R06104 A C cC A C T T T
R06097 cC A cC A C T T C
R06101 T A C C A C T T C

Count matrix (TRANSFAC matrix FSPHO4_01)

Residue\positon | 1 [ 2 |3 |4 [ 5|6 |7 |8 |9 |10 (11|12
A 1/3|2|0|8|0|0|O|O|O]|1]|2

(o3 2123 |8|0|8|0|]0|JO|2]|]0]2

G 1712(3|]0]0]0|8|]0|5|4|5]|2

T 4 11]0|0]0]0]J]0|8]|3]|2]|2]|2

Sum 8/8(8|8 | 8|(8|(8|(8|8|8)|8]8

Tom Schneider’s sequence logo
(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)
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Count matrix (TRANSFAC matrix FSPHO4_01)

Residue count matrix

Residue\position 5 6 7 8 9 10
1 3 2 0 8 0 0 0 0 0 1 2
2 2 3 8 0 8 0 0 0 2 0 2
1 2 3 0 0 0 8 0 5 4 5 2
4 1 0 0 0 0 0 8 3 2 2 2
8 8 8 8 8 8 8 8 8 8 8 8

Tom Schneider’s sequence logo
(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)

IA

~SA

g
o
]

=
o

occurrences

(=]

C TTITC

NMQ‘ID(DNQO’O

o
o |

T

‘—



http://weblogo.berkeley.edu/logo.cgi

Frequency matrix

Residue\position | 1 2 3 4 5 6 7 8 9 10 11 12

A 0,125 0,375 0,250 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,125 0,250

C 0,250 0,250 0,375 1,000 0,000 1,000 0,000 0,000 0,000 0,250 0,000 0,250

G 0,125 0,250 0,375 0,000 0,000 0,000 1,000 0,000 0,625 0,500 0,625 0,250

T 0,500 0,125 0,000 0,000 0,000 0,000 0,000 1,000 0,375 0,250 0,250 0,250

Sum 1,00 1,00 1,00 1,00 1,00 100 1,00 1,00 1,00 1,00 1,00 1,00

i A alphabet size (=4)
A n;j, occurrences of residue i at position j
n;; Di prior residue probability for residue i
i=1 i relative frequency of residue i at position j
PHO4
1.0+
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Count matrix with pseudo-count

1st option: identically distributed pseudo-weight (equiprobable residue priors)

Count matrix with pseudo-count k=1 Equiprobable residues
Residue\position 1 2 3 4 5 6 7 8 9 10 1 12 | Prior (pi)
A 125 325 225 025 8,25 025 025 0,25 025 0,25 125 225 0,25
C 225 225 325 8,25 025 8,25 0,25 025 025 225 0,25 225 0,25
G 125 225 3,25 025 025 0,25 825 0,25 525 425 525 225 0,25
T 425 125 025 025 0,25 0,25 0,25 8,25 3,25 225 225 225 0,25
Sum 9,00 9,00 9,00 900 900 900 900 9,00 900 9,00 9,00 9,00 1,00

2nd option: pseudo-weights distributed according to residue-specific priors

Count matrix with pseudo-count k=1 Specific nucleotide frequencies
Residue\position | 1 2 3 4 5 6 7 8 9 10 11 12 | Prior (pi)
A 1,33 333 233 033 833 033 033 033 033 0,33 133 233 0,33 , n;+ pik
Cc 217 217 34147 847 0417 847 0417 0417 017 217 0417 217 0,17 Lj A
G 117 247 347 0417 047 047 847 0,17 547 417 517 217 0,17 Eni’j +k
T 433 133 033 033 033 033 033 8,33 333 233 233 233 0,33 i=1
Sum 9,00 9,00 9,00 900 9,00 900 9,00 900 9,00 900 9,00 9,00 1,00
A alphabet size (=4) fi;  relative frequency of residue i at position j
n;; occurrences of residue i at position j k  pseudo weight (arbitrary, 1 in this case)

p;  prior residue probability for residue i

fi,j

corrected frequency of residue i at position j




Corrected frequency matrix

Frequency matrix corrected with pseudo-count =1 Specific nucleotide frequencies

Residue\position 1 2 3 4 5 6 7 8 9 10 1 12 | Prior (pi)
A 0,148 0,370 0,259 0,037 0,926 0,037 0,037 0,037 0,037 0,037 0,148 0,259 | 0,33
C 0,241 0,241 0,352 0,908 0,019 0,908 0,019 0,019 0,019 0,241 0,019 0,241 0,17
G 0,130 0,241 0,352 0,019 0,019 0,019 0,908 0,019 0,574 0,463 0,574 0,241 0,17
T 0,481 0,148 0,037 0,037 0,037 0,037 0,037 0,926 0,370 0,259 0,259 0,259 | 0,33
Sum 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,00

corrected frequencies
o
($)]

’ n, ; + plk A alphabet size (=4)‘ ‘ o
fi i = A— n;;  occurrences of residue i at position j
’ p:  prior residue probability for residue i
E n’i, j +k .;  relative frequency of residue i at position j
i=1 k pseudo weight (arbitrary, 1 in this case)

fij  corrected frequency of residue i at position j
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Weight matrix (Bernoulli model)

Weight matrix k=1 Specific nucleotide frequencies
Residue\position 1 2 3 4 5 6 7 8 9 10 11 12 | Prior (pi)
A -0,35 0,05 -0,11 -0,9 045 -095 -095 -095 -0,95 -0,95 -0,35 -0,11 0,33
C 0,15 015 032 0,73 -095 0,73 095 -095 -0,9 0,5 -095 0,15 0,17
G -012 0215 0,32 -0,9 -095 -095 0,73 -095 053 044 0,53 0,15 0,17
T 0,16 -0,35 -095 -0,9 -095 -095 -095 045 0,05 -0,11 -0,11 -0,11 0,33
Sum -0,150 0,004 -0,427 -2,135-2,415 -2,135 -2,135 -2,415 -1,330 -0,472 -0,880 0,093 1,00

The use of a weight matrix relies on Bernoulli assumption

. n+pk f'
fi,j = A W _ ln i,j If we assume, for the background model, an independent
En +k i,j succession of nucleotides (Bernoulli model), the weight W of
J pi a sequence segment S is simply the sum of weights of the
r=l nucleotides at successive positions of the matrix (W;)).
A alphabet size (=4) In this case, it is convenient to convert the PSSM into a weight
n;;  occurrences of residue i at position j matrix, which can then be used to assign a score to each

prior residue probability for residue i position of a given sequence.

relative frequency of residue i at position j
pseudo weight (arbitrary, 1 in this case)
corrected frequency of residue i at position j

., weight of residue i at position j
10
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Properties of the weight function
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The weight is
o positive when 7, > p,

a

(favourable positions for the binding of
the transcription factor)

negative when f”,. < p,
(unfavourable positions)
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Regulatory Sequence Analysis

Information content
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Shannon uncertainty

. A

= Shannon uncertainty .

o Hs(j): uncertainty of a column of a PSSM Hs(.])= _2 ]‘;] logz(fi,j)
o Hg: uncertainty of the background (e.g. a genome) i=1

= Special cases of uncertainty A
(fora 4 letter alphabet) Hg = _2 D, logz(p,-)
o min(H)=0 i=1

* No uncertainty at all: the nucleotide is completely

specified (e.g. p={1,0,0,0}) . . .
o H=1 Rseq(])=Hg _Hs(.]) Rseq =2Rseq(-])
* Uncertainty between two letters (e.g. p={0.5,0,0,0.5}) Jj=1
o max(H) = 2 (Complete uncertainty) A f . w .
E . o o .
* One bit of information is required to specify the choice Rseq (]) = 2 flj 10g2 L,Jj Rseq = ERseq(J)

between each alternative (e.g. p={0.25,0.25,0.25,0.25}).

* Two bits are required to specify a letter in a 4-letter
alphabet.

i=1 i j=1

» Ryeq
o Schneider (1986) defines an information content based on
Shannon’ s uncertainty.
= R
o For skewed genomes (i.e. unequal residue probabilities),
Schneider recommends an alternative formula for the
information content .
o This is the formula that is nowadays used.
Adapted from Schneider et al. Information content of binding sites on nucleotide sequences. J Mol Biol (1986) vol. 188 (3) pp. 415-31. PMID 3525846. =13



http://www.ncbi.nlm.nih.gov/pubmed/3525846

Information content of a PSSM

Information content matrix =1 Specific nucleotide frequencies
Residue\position 1 2 3 4 5 6 7 8 9 10 1 12 | Prior (pi)
A -0,12 0,04 -0,06 -0,08 095 -008 -0,08 -0,08 -0,08 -0,08 -0,42 -0,06 0,33
C 0,08 0,08 0,26 152 -0,04 1,52 -0,04 -0,04 -0,04 0,08 -0,04 0,08 0,17
G -0,03 0,08 0,26 -0,04 -004 -004 152 -0,04 0,70 046 0,70 0,08 0,17
T 0,18 -0,12 -0,08 -0,08 -0,08 -0,08 -0,08 095 0,04 -0,06 -0,06 -0,06 0,33
Sum 0,112 0,092 0,370 1,318 0,791 1,318 1,318 0,791 0,620 0,405 0,476 0,043 1,00
Ty TR 7 A D
i,j A ! i,j _
En..+k lij=fijtm == IJ':EIM Imtﬂx_EEI
i,j D; i=1 j=1 i=1
i=1

alphabet size (=4)

occurrences of residue i at position j

matrix width (=12)

prior residue probability for residue i
relative frequency of residue i at position j
pseudo weight (arbitrary, 1 in this case)
corrected frequency of residue i at position j
weight of residue i at position j

information of residue i at position j

information content
©O O =

o O O
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Information content I; of a cell of the matrix

= For a given cell of the matrix
o Iy is positive when f7; > p;
(i.e. when residue i is more frequent at position j than expected by chance)
o I, is negative when f°; < p;
o I, tends towards 0 when f7; -> 0
because limit,~¢ (x In(x)) = 0

Information content Information content
as a function of residue frequency as a function of residue frequency (log scale)
S o e e (S T I R T 1 [ NSNS M o
- I=0 for f=p : 0.3 : g T IC=0 for f=p
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Information content of a column of the matrix

= For a given column i of the matrix A A ,

o The information of the column (7)) is the sum of ' fi j
. e / I[.=>1 =) f In=—
information of its cells. j i,j i,j

a I is always positive i=1 i=1 Pi

o I;is 0 when the frequency of all residues equal
their prior probability (f,=p;)

o I is maximal when

* the residue i, with the lowest prior probability
has a frequency of 1 1
(all other residues have a frequency of 0) max(Ij) =1'In —|= —11’1(pi)

* and the pseudo-weight is null (k=0).

i = argmini(pi) k=0

l
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Rseq(j)
e(n)

Remarks
This information content does not include any correction for the prior residue probabilities (pi)

This information content is expressed in bits.

Boundaries
min(Rseq)=0 equiprobable residues
perfect conservation of 1 residue with a pseudo-weight of 0,

max(Rseq)=2

Sequence logos can be generated

correction for small samples (pseudo-weight)

Schneider & Stephens(1990) propose a graphical representation based on his previous entropy (H) for representing the
importance of each residue at each position of an alignment. He provides a new formula for Rseq

Hs(j) uncertainty of column j
“information content” of column j (beware, this definition differs from Hertz’ information content)

from aligned sequences on the Weblogo server http://weblogo.berkeley.edu/logo.cqi
From matrices or sequences on enologos http://www.benoslab.pitt.edu/cqgi-bin/enologos/enologos.cgi

Hs(j)= _2 fij logZ(fij)

R(1)=2-Hj)+e

hl_] = ~finseq (.])

bits

Pho4p binding motif

B 1 iy

N O < 1 O M~ oo O

12

Schneider logos
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Information content of the matrix

= The total information content represents
the capability of the matrix to make the woA
distinction between a binding site I . = 22]
(represented by the matrix) and the .

j=1i=1
background model.
= The information content also allows to
estimate an upper limit for the expected P(Site) < o~ marix
frequency of the binding sites in random
sequences.

= The pattern discovery program
consensus (developed by Jerry Hertz)
optimises the information content in order
to detect over-represented motifs.

= Note that this is not the case of all pattern
discovery programs: the gibbs sampler
algorithm optimizes a log-likelihood.

s Hertz and Stormo (1999). Identifvina DNA and protein patterns with statisticallv sianificant alianments of multiple sequences. Bioinformatics 15: 563-77. PI\7I1B 1


http://www.ncbi.nlm.nih.gov/pubmed/10487864

Information content: effect of prior probabilities

= The upper bound of J; increases when p; decreases
o I 2Inf when p, 20
= The information content, as defined by Gerald Hertz, has thus no upper bound.
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References - PSSM information content
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